2018, Número 3
<< Anterior Siguiente >>
Acta Med 2018; 16 (3)
Farmacoeconomía de sugammadex para la reversión de la relajación neuromuscular con anestesia general en el Hospital Ángeles Pedregal
Vázquez MCA, Alarcón RJJ, Linares NF
Idioma: Español
Referencias bibliográficas: 41
Paginas: 209-218
Archivo PDF: 380.86 Kb.
RESUMEN
Los bloqueadores neuromusculares facilitan intubación endotraqueal, manejo invasivo de vía aérea y relajación transoperatoria. El bloqueo neuromuscular residual es un problema frecuente y poco detectado en la Unidad de Cuidados Postanestésicos. El tren de cuatro es un método útil de monitorización neuromuscular. El objetivo del estudio fue realizar una evaluación económica de sugammadex
versus neostigmina/atropina.
Material y métodos: Estudio observacional, prospectivo, en pacientes de cirugía laparoscópica electiva bajo anestesia general con rocuronio, realizando reversión neuromuscular en bloqueo moderado (TOF ‹ 0.9). Grupo 1 (n = 30) sugammadex a 2 mg/kg, grupo 2 (n = 30) neostigmina a 0.04 mg/kg y atropina a 0.15 mg/kg.
Resultados: Sugammadex tardó 1.4 minutos en alcanzar TOFr › 90% y neostigmina 15.42 minutos (p = 0.00), encontrando ahorro de tiempo en sala de operaciones de 14.01 minutos. En UCPA, sugammadex presentó tiempo de estancia promedio de 52.03 minutos y neostigmina de 68.90 minutos, ahorrando 16.87 minutos (p = 0.0002). El ahorro de costo por fracción de tiempo en quirófano fue de $1,343.5 pesos y en UCPA de $2,760.50 pesos.
Conclusiones: Sugammadex presenta diferencia significativa del tiempo ahorrado en sala de operaciones, pero no en el costo. Su uso en quirófano permite obtener ahorro en tiempo de estancia y costo a su egreso de UCPA, compensando el costo del medicamento.
REFERENCIAS (EN ESTE ARTÍCULO)
Carrillo ER. Clínica de relajantes musculares 2. Clínicas mexicanas de anestesiología, 16. Editorial Alfil. 2012.
Debaene B, Plaud B, Dilly MP, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology. 2003; 98 (5): 1042-1048.
Brull SJ, Murphy GS. Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg. 2010; 111 (1): 129-140.
Macario A, Vitez TS, Dunn B, McDonald T. Where are the cost in perioperative care? Analysis of hospital costs and charges for inpatient surgical care. Anesthesiology. 1995; 83 (6): 1138-1144.
Macario A. What does one minute of operating room time cost? J Clin Anesth. 2010; 22 (4): 233-236.
Hawkes C, Miller D, Martineau R, Hull K, Hopkins H, Tierney M. Evaluation of cost minimization strategies of anaesthetic drugs in a tertiaty care hospital. Can J Anaesth. 1994; 41 (10), 894-901.
Arbous MS, Grobbee DE, van Kleef JW, de Lange JJ, Spoormans HH, Touw P et al. Mortality associated with anaesthesia: a qualitative analysis to identify risk factors. Anaesthesia. 2001; 56 (12): 1141-1153.
Naguib M, Kopman AF, Ensor JE. Neuromuscular monitoring and postoperative residual curarization: a meta-analysis. Br J Anaesth. 2007; 98 (3): 302-316.
Insinga RP, Joyal C, Goyette A, Galarneau A. A discrete event simulation model of clinical and operating room efficiency outcomes of sugammadex versus neostigmine for neuromuscular block reversal in Canada. BMC Anesthesiology. 2016; 16 (1): 114.
Fabregat LJ, Candia CA, Castillo MC. La monitorización neuromuscular y su importancia en el uso de los bloqueantes neuromusculares. Revista Colombiana de Anestesiología. 2012; 40 (4): 293-303.
Fields AM, Vadivelu N. Sugammadex: a novel neuromuscular blocker binding agent. Curr Opin Anaesthesiol. 2007; 20 (4): 307-310.
Paton F, Paulden M, Chambers D, Heirs M, Duffy S, Hunter JM et al. Sugammadex compare with neostigmine/glycopyrrolate for routine reversal of neuromuscular block: a systematic review and economic evaluation. Br J Anaesth. 2010; 105 (5): 558-567.
Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL. Methods for the economic evaluation of health care programmes. Third edition. Oxford: Oxford University Press. 2005.
Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J et al. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anaesthesiol Scand. 2007; 51 (7): 789-808.
Sanfilippo M, Alessandri F, Wefki Abdelgawwad Shousha AA, Sabba A, Cutolo A. Sugammadex and ideal body weight in bariatric surgery. Anesthesiol Res Practice. 2013; 2013: 389782.
Kantor GS, Chung F. Anaesthesia drug cost, control and utilization in Canada. Can J Anaesth. 1996; 43 (1): 9-16.
Orkin FK. Moving toward value-based anesthesia care. J Clin Anesth. 1993; 5 (2): 91-98.
Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS et al. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the Postanesthesia Care Unit. Anesthesiology. 2008; 109 (3): 389-398.
Eikermann M, Groeben H, Hüsing J, Peters J. Accelerometry of adductor pollicis muscle predicts recovery of respiratory function from neuromuscular blockade. Anesthesiology. 2003; 98 (6): 1333-1337.
Waud BE, Waud DR. The relation between tetanic fade and receptor occlusion in the presence of competitive neuromuscular block. Anesthesiology. 1971; 35 (5): 456-464.
Eikermann M, Gerwig M, Hasselmann C, Fiedler G, Peters J. Impaired neuromuscular transmission after recovery of the train-of-four ratio. Acta Anaesthesiol Scand. 2007; 51 (2): 226-234.
Sundman E, Witt H, Olsson R, Ekberg O, Kuylenstierna R, Eriksson LI. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: Pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology. 2000; 92 (4): 977-984.
Eikermann M, Blobner M, Groeben H, Rex C, Grote T, Neuhäuser M et al. Postoperative upper airway obstruction after recovery of the train of four ratio of the adductor pollicis muscle from neuromuscular blockade. Anesth Analg. 2006; 102 (3): 937-942.
Norton M, Xará D, Parente D, Barbosa M, Abelha FJ. Residual neuromuscular block as a risk factor for critical respiratory events in the Post Anesthesia Care Unit. Rev Esp Anestesiol Reanim. 2013; 60 (4): 190-196.
Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia. 2001; 56 (4): 312-318.
Yağan Ö, Taş N, Mutlu T, Hancı V. Comparison of the effects of sugammadex and neostigmine on postoperative nausea and vomiting. Braz J Anestesiol. 2017; 67 (2): 147-152.
Sacan O, White PF, Tufanogullari B, Klein K. Sugammadex reversal of rocuronium-induced neuromuscular blockade: a comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesth Analg. 2007; 104 (3): 569-574.
Hazizaj A, Hatija A. Bronchospasm caused by neostigmine. Eur J Anaesthesiol. 2006; 23 (1): 85-86.
Bjerke RJ, Mangione MP. Asystole after intravenous neostigmine in a heart transplant recipient. Can J Anaesth. 2001; 48 (3): 305-307.
Eikermann M, Fassbender P, Malhotra A, Takahashi M, Kubo S, Jordan AS, Gautam S et al. Unwarranted administration of acetylcholinesterase inhibitors can impair genioglossus and diaphragm muscle function. Anesthesiology. 2007; 107 (4): 621-629.
Herbstreit F, Zigrahn D, Ochterbeck C, Peters J, Eikermann M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2010; 113 (6): 1280-1288.
Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesthc Analg. 2008; 107 (1): 130-137.
Grosse-Sundrup M, Henneman JP, Sandberg WS, Bateman BT, Uribe JV, Nguyen NT et al. Intermediate acting nondepolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ. 2012; 345: e6329.
Chambers D, Paulden M, Paton F, Heirs M, Duffy S, Hunter JM et al. Sugammadex for reversal of neuromuscular block after rapid sequence intubation: a systematic review and economic assessment. Br J Anaesth. 2010; 105 (5): 568-575.
Ledowski T, Falke L, Johnston F, Gillies E, Greenaway M, De Mel A et al. Retrospective investigation of postoperative outcome after reversal of residual neuromuscular blockade: sugammadex, neostigmine or no reversal. Eur J Anaesthesiol. 2014; 31 (18): 423-429.
Ledowski T, Hillyard S, Kozman A, Johnston F, Gillies E, Greenaway M et al. Unrestricted access to sugammadex: impact on neuromuscular blocking agent choice, reversal practice and associated healthcare costs. Anaesth Intensive Care. 2012; 40 (2): 340-343.
Park JY. Benefits and risks of sugammadex. Korean J Anesthesiol. 2015; 68 (1): 1-2.
Dahl V, Pendeville PE, Hollmann MW, Heier T, Abels EA, Blobner M. Safety and efficacy of sugammadex for the reversal of rocuronium-induced neuromuscular blockade in cardiac patients undergoing noncardiac surgery. Eur J Anaesthesiol. 2009; 26 (10): 874-884.
Hristovska AM, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017; 8: CD012763.
De la Torre-Anderson J, de la Torre-Buendía J, Zamora-García V. Eficacia y seguridad del sugammadex. Rev Mex Anest. 2014; 37 (2): 77-82.
Thilen S, Bhananker SM. Qualitative neuromuscular monitoring: How to optimize the use of a peripheral nerve stimulator to reduce the risk of residual neuromuscular blockade. Curr Anesthesiol Rep. 2016; 6: 164-169.