2018, Number 1
<< Back Next >>
Arch Neurocien 2018; 23 (1)
Semantic cognition and its impairments in semantic dementia and semantic aphasia
Ferrer-Aragón J, Patiño TVM
Language: Spanish
References: 83
Page: 39-49
PDF size: 400.70 Kb.
ABSTRACT
Semantic cognition is relatively new topic of interest in neuroscientific research. Its brief
history started a few decades ago, from the publication of the first reports on selective
impairments of semantic knowledge in brain damaged individuals, and the formulation
of the first theoretical models on this topic. In this contribution, we review key issues and
hypotheses about the neural organization of semantic cognition, based on a novel framework
named Controlled Semantic Cognition, proposed by Lambon Ralph, et. al. We also provide
analysis of the main findings supporting this model, obtained from neurofunctional studies in
neurologically healthy subjects, as well as neuropsychological studies in patients with semantic
dementia and semantic aphasia. This analysis might contribute to a better comprehension
of the neurocognitive mechanisms involved in semantic cognition in healthy as well as brain
damaged individuals.
REFERENCES
Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT. The neural and computational bases of semantic cognition. Nat Rev Neurosci. 2017; 24;18(1):42–55. Available from: http://www.nature.com/doifinder/10.1038/nrn.2016.150
2.Lambon Ralph M a, Sage K, Jones RW, Mayberry EJ. Coherent concepts are computed in the anterior temporal lobes. Proc Natl Acad Sci U S A. 2010;107(6):2717–22. Available from: http://www.pnas.org/content/107/6/2717.full.pdf?with-ds=yes
3.Pobric G, Jefferies E, Lambon Ralph MA. Category-Specific versus Category-General Semantic Impairment Induced by Transcranial Magnetic Stimulation. Curr Biol 2010;20(10):964–8. Available from: http://dx.doi.org/10.1016/j.cub.2010.03.070
4.Jackson RL, Hoffman P, Pobric G, Lambon Ralph MA. The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity. Cereb Cortex 2015;25(11):4319–33. Available from: http://www.cercor.oxfordjournals.org/lookup/doi/10.1093/cercor/ bhv003
5.Lin EL, Murphy GL. Thematic relations in adults’ concepts. J Exp Psychol Gen 2001;130(1):3–28. Available from: http://www.ncbi.nlm. nih.gov/pubmed/11293459
6.Pobric G, Lambon Ralph MA, Jefferies E. The role of the anterior temporal lobes in the comprehension of concrete and abstract words: rTMS evidence. Cortex 2009;45(9):1104–10. Available from: http://dx.doi.org/10.1016/j.cortex.2009.02.006
7.Pobric G, Jefferies E, Lambon Ralph MA. Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation. Neuropsychol 2010;48(5):1336–42. Available from: http://dx.doi.org/10.1016/j. neuropsychol 2009;12:36
8.Hoffman P, Binney RJ, Lambon Ralph MA. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex 2015;63:250–66. Available from: http://dx.doi.org/10.1016/j.cortex.2014.09.001
9.Paivio A. mental representations: a dual coding approach. Oxford University Press; 1990. Available from: http://www. oxfordscholarship.com/view/10.1093/acprof:oso/9780195066661.001.0001/acprof-9780195066661
10.Vigliocco G, Kousta S, Vinson D, Andrews M, Del Campo E. The representation of abstract words: what matters? Reply to Paivio’s (2013) comment on Kousta et al. J Exp Psychol Gen 2013 ;142(1):288–91. Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/ a0028749
11.Kousta S-T, Vigliocco G, Vinson DP, Andrews M, Del Campo E. The representation of abstract words: why emotion matters. J Exp Psychol Gen 2011;140(1):14–34. Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0021446
12.Moreno-Martínez FJ, Montoro PR, Rodríguez-Rojo IC. Spanish norms for age of acquisition, concept familiarity, lexical frequency, manipulability, typicality, and other variables for 820 words from 14 living/nonliving concepts. Behav Res Methods 2014 ;46(4):1088– 97. Available from: http://link.springer.com/10.3758/s13428-013-0435-x
13.Smith EE. Effects of familiarity on stimulus recognition and categorization. J Exp Psychol 1967;74(3):324–32. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/6052609
14.Woollams AM. Apples are not the only fruit: the effects of concept typicality on semantic representation in the anterior temporal lobe. Front Hum Neurosci 2012;6:85. Available from: http://journal.frontiersin.org/article/10.3389/fnhum.2012.00085/abstract
15.Rogers TT, Patterson K. Object categorization: reversals and explanations of the basic-level advantage. J Exp Psychol Gen 2007;136(3):451–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17696693
16.Patterson K, Nestor PJ, Rogers TT. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 2007;8(12):976–87. Available from: http://www.nature.com.proxy.libraries.rutgers.edu/nrn/journal/v8/n12/ full/nrn2277.html
17.Martin A, Haxby J V., Lalonde FM, Wiggs CL, Ungerleider LG. Discrete cortical regions associated with knowledge of color and knowledge of action. Science. 1995 6;270(5233):102–5. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.270.5233.102
18.Martin A. The Representation of object concepts in the brain. Annu Rev Psychol 2007 ;58(1):25–45. Available from: http://www. annualreviews.org/doi/10.1146/annurev.psych.57.102904.190143
19.Ishibashi R, Lambon Ralph MA, Saito S, Pobric G. Different roles of lateral anterior temporal lobe and inferior parietal lobule in coding function and manipulation tool knowledge: evidence from an rTMS study. Neuropsychol 2011; 49(5):1128–35. Available from: http://dx.doi.org/10.1016/j.neuropsychologia.2011.01.004
20.Visser M, Jefferies E, Embleton K V. Lambon Ralph M a. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J Cogn Neurosci 2012;24(8):1766–78. Available from: http://cognet.mit.edu/system/cogfiles/journalpdfs/ jocn_a_00244.pdf
21.Visser M, Embleton K V, Jefferies E, Parker GJ, Ralph MAL. The inferior, anterior temporal lobes and semantic memory clarified: Novel evidence from distortion-corrected fMRI. Neuropsychol 2010;48(6):1689–96. Available from: http://dx.doi.org/10.1016/j. neuropsychol 2010;02:016
22.Binney RJ, Lambon Ralph MA. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network. Neuropsychol 2015;76:170–81. Available from: http://dx.doi.org/10.1016/j. neuropsychologia.2014.11.009
23.Binney RJ, Embleton K V., Jefferies E, Parker GJM, Lambon Ralph MA. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb Cortex 2010;20(11):2728–38.
24.Hoffman P, Evans GAL, Lambon Ralph MA. The anterior temporal lobes are critically involved in acquiring new conceptual knowledge: evidence for impaired feature integration in semantic dementia. Cortex 2013;50(100):19–31.
25.Wang J, Conder JA, Blitzer DN, Shinkareva S V. Neural representation of abstract and concrete concepts: a meta-analysis of neuroimaging studies. Hum Brain Mapp 2010 ;31(10):1459–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20108224
26.Noppeney U, Price CJ. Retrieval of abstract semantics. Neuroimage 2004 ;22(1):164–70. Available from: http://www.ncbi.nlm.nih. gov/pubmed/15110006
27.Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 2009;19(12):2767–96.
28.Binney RJ, Parker GJM, Lambon Ralph MA. Convergent connectivity and graded specialization in the rostral human temporal lobe as revealed by diffusion-weighted Imaging probabilistic tractography. J Cogn Neurosci 2012 ;24(10):1998–2014. Available from: http:// www.mitpressjournals.org/doi/10.1162/jocn_a_00263
29.Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R, Ding S-L, et al. Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex 2015;25(3):680–702. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24068551
30.Fan L, Wang J, Zhang Y, Han W, Yu C, Jiang T. Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. Cereb Cortex 2014;24(12):3365–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23926116
31.Jackson RL, Hoffman P, Pobric G, Lambon Ralph MA. The semantic network at work and rest: differential connectivity of anterior temporal lobe subregions. J Neurosci 2016;36(5):1490–50. Available from: http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=4737765&tool=pmcentrez&rendertype=abstract
32.Canini M, Della Rosa PA, Catricalà E, Strijkers K, Branzi FM, Costa A, et al. Semantic interference and its control: a functional neuroimaging and connectivity study. Hum Brain Mapp 2016 Nov;37(11):4179–96. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/27355179
33.Badre D, Poldrack RA, Paré-Blagoev EJ, Insler RZ, Wagner AD. Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 2005;47(6):907–18.
34.Badre D, Wagner AD. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychol 2007;45(13):2883– 901.
35.Wagner AD, Paré-Blagoev EJ, Clark J, Poldrack RA. Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron 2001; 2,31(2):329–38. Available from: http://www.sciencedirect.com/science/article/pii/S0896627301003592
36.Krieger-Redwood K, Teige C, Davey J, Hymers M, Jefferies E. Conceptual control across modalities: Graded specialisation for pictures and words in inferior frontal and posterior temporal cortex. Neuropsychologia 2015;76:92–107. Available from: http://dx.doi. org/10.1016/j.neuropsychologia.2015.02.030
37.Davey J, Thompson HE, Hallam G, Karapanagiotidis T, Murphy C, De Caso I, et al. Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. Neuroimage 2016; 15;137:165–77. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1053811916301719
38.Davey J, Rueschemeyer S-A, Costigan A, Murphy N, et al. Shared neural processes support semantic control and action understanding. Brain Lang 2015;142:24–35. Available from: http://www.sciencedirect.com/science/article/pii/S0093934X15000036
39.Howard D, Patterson K. Pyramids and palm trees: a test of semantic access from pictures and words. Pearson assessment, editor. Oxford; 1992.
40.Whitney C, Kirk M, O’Sullivan J, Lambon Ralph MA, Jefferies E. Executive semantic processing is underpinned by a large-scale neural network: revealing the contribution of left prefrontal, posterior temporal, and parietal cortex to controlled retrieval and selection using TMS. J Cogn Neurosci 2012;24(1):133–47. Available from: http://www.mitpressjournals.org/doi/abs/10.1162/jocn_a_00123
41.Noonan K A, Jefferies E, Corbett F, Lambon Ralph M. Elucidating the nature of deregulated semantic cognition in semantic aphasia: evidence for the roles of prefrontal and temporo-parietal cortices. J Cogn Neurosci 2010;22(7):1597–613.
42.Davey J, Cornelissen PL, Thompson HE, Sonkusare S, Hallam G, Smallwood J, et al. Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and ngular gyrus. J Neurosci 2015;35(46):15230–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4649000&tool=pmcentrez&rendertype=abstract
43.Thompson H, Davey J, Hoffman P, Hallam G, Kosinski R, Howkins S, et al. Semantic control deficits impair understanding of thematic relationships more than object identity. Neuropsychol 2017;104:113–25.
44.Hoffman P, Rogers TT, Ralph M a L. Semantic diversity accounts for the “missing” word frequency effect in stroke aphasia: insights using a novel method to quantify contextual variability in meaning. J Cogn Neurosci 2011;23(9):2432–46.
45.Rogers TT, McClelland JL. Semantic cognition: a parallel distributed processing approach. Attention and performance. 2004. 439
46.Noppeney U, Phillips J, Price C. The neural areas that control the retrieval and selection of semantics. Neuropsychol 2004;42(9):1269– 80.
47.Noonan KA, Jefferies E, Visser M, Lambon Ralph MA. Going beyond inferior prefrontal involvement in semantic control: evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. J Cogn Neurosci 2013;25(11):1824–50. Available from: http://www.mitpressjournals.org/doi/abs/10.1162/jocn_a_00442
48.Whitney C, Kirk M, O’Sullivan J, Lambon Ralph MA, Jefferies E. The neural organization of semantic control: TMS evidence for a distributed network in left inferior frontal and posterior middle temporal gyrus. Cereb Cortex 2011;21(5):1066–75.
49.Hallam GP, Whitney C, Hymers M, Gouws AD, Jefferies E. Charting the effects of TMS with fMRI: modulation of cortical recruitment within the distributed network supporting semantic control. Neuropsychologia 2016;93:40–52.
50.Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A 1997; 23;94(26):14792–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9405692
51.Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R, Ding S-L, et al. Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex 2015;25(3):680–702. Available from: https://academic.oup.com/cercor/articlelookup/ doi/10.1093/cercor/bht260
52.Fedorenko E, Duncan J, Kanwisher N. Language-selective and domain-general regions lie side by side within broca’s area. Curr Biol 2012; 6,22(21):2059–62. Available from: http://dx.doi.org/10.1016/j.cub.2012.09.011
53.Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 2010;14(4):172–9.
54.Warrington EK, Shallice T. Category specific semantic impairments. Brain 1984;107, 3:829–54. Available from: http://www.ncbi.nlm. nih.gov/pubmed/6206910
55.Mesulam MM. Slowly progressive aphasia without generalized dementia. Ann Neurol 1982;11(6):592–8. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/7114808
56.Seeley WW, Bauer AM, Miller BL, Gorno-Tempini ML, Kramer JH, Weiner M, et al. The natural history of temporal variant frontotemporal dementia. Neurology 2005;26,64(8):1384–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15851728
57.Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76(11):1006–14.
58.Hodges JR, Patterson K, Oxbury S, Funnell E. Semantic Dementia. Brain 1992;115(6):1783–806. Available from: http://brain. oxfordjournals.org/content/115/6/1783.short
59.Hodges JR, Patterson K. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol 2007;6(11):1004–14.
60.Agosta F, Henry RG, Migliaccio R, Neuhaus J, Miller BL, Dronkers NF, et al. Language networks in semantic dementia. Brain 2010; 133(1):286–99.
61.Acosta-Cabronero J, Patterson K, Fryer TD, Hodges JR, Pengas G, Williams GB, et al. Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story. Brain 2011;134(7):2025–35.
62.Lambon Ralph MA, Lowe C, Rogers TT. Neural basis of category-specific semantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. Brain 2007;130(4):1127–37.
63.Jefferies E, Patterson K, Jones RW, Lambon Ralph M a. Comprehension of concrete and abstract words in semantic dementia. Neuropsychol 2009;23(4):492–9.
64.Bozeat S, Lambon Ralph MA, Patterson K, Garrard P, Hodges JR. Non-verbal semantic impairment in semantic dementia. Neuropsychol 2000;38(9):1207–15.
65.Goll JC, Crutch SJ, Loo JHY, Rohrer JD, Frost C, Bamiou D-E, et al. Non-verbal sound processing in the primary progressive aphasias. Brain 2010 ;133(1):272–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19797352
66.Luzzi S, Snowden JS, Neary D, Coccia M, Provinciali L, Lambon Ralph MA. Distinct patterns of olfactory impairment in Alzheimer’s disease, semantic dementia, frontotemporal dementia, and corticobasal degeneration. Neuropsychol 2007;45(8):1823–31.
67.Hodges JR, Bozeat S, Lambon Ralph M a, Patterson K, Spatt J. The role of conceptual knowledge in object use evidence from semantic dementia. Brain 2000; 123, 9:1913–25.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/10960055
68.Hoffman P, Jones RW, Lambon Ralph MA. Be concrete to be comprehended: consistent imageability effects in semantic dementia for nouns, verbs, synonyms and associates. Cortex 2013;49(5):1206–18.
69.Hoffman P, Ralph MAL. Reverse concreteness effects are not a typical feature of semantic dementia: Evidence for the hub-andspoke model of conceptual representation. Cereb Cortex 2011;21(9):2103–12.
70.Papagno C, Capasso R, Miceli G. Reversed concreteness effect for nouns in a subject with semantic dementia. Neuropsychol 2009;47(4):1138–48.
71.Yi H-A, Moore P, Grossman M. Reversal of the concreteness effect for verbs in patients with semantic dementia. Neuropsychol 2007;21(1):9–19.
72.Bonner MF, Vesely L, Price C, Anderson C, Richmond L, Farag C, et al. Reversal of the concreteness effect in semantic dementia. Cogn Neuropsychol 2009;26(6):568–79.
73.Warrington EK. The selective impairment of semantic memory. Q J Exp Psychol 1975; 27(4):635–57. Available from: http://www. ncbi.nlm.nih.gov/pubmed/1197619
74.Reilly J, Peelle JE, Antonucci SM, Grossman M. Anomia as a marker of distinct semantic memory impairments in Alzheimer’s disease and semantic dementia. Neuropsychol 2011; 25(4):413–26. Available from: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0022738
75.Lambon Ralph M a, Graham KS, Ellis a W, Hodges JR. Naming in semantic dementia--what matters?. Neuropsychol 1998 ;36(8):775–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9751441
76.Woollams AM, Cooper-Pye E, Hodges JR, Patterson K. Anomia: a doubly typical signature of semantic dementia. Neuropsychol 2008; 46(10):2503–14. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0028393208001280
77.Jefferies E, Lambon Ralph MA. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 2006;129(8):2132–47.
78.Hoffman P. The meaning of “life” and other abstract words: Insights from neuropsychology. J Neuropsychol 2016;10(2):317–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25708527
79.Corbett F, Jefferies E, Ehsan S, Ralph MAL. Different impairments of semantic cognition in semantic dementia and semantic aphasia: Evidence from the non-verbal domain. Brain 2009;132(9):2593–608.
80.Jefferies E, Baker SS, Doran M, Ralph MAL. Refractory effects in stroke aphasia: A consequence of poor semantic control. Neuropsychol 2007;45(5):1065–79.
81.Jefferies E, Patterson K, Ralph MAL. Deficits of knowledge versus executive control in semantic cognition: insights from cued naming. Neuropsychol 2008; 46(2):649–58.
82.Thompson HE, Robson H, Lambon Ralph MA, Jefferies E. Varieties of semantic “access” deficit in Wernicke’s aphasia and semantic aphasia. Brain 2015;138(12):3776–92.