2018, Number 1
Next >>
Rev Cent Dermatol Pascua 2018; 27 (1)
Comparison of the inhibitory effect on C. albicans, of ketoconazole incorporated in liquid-crystalline mesophases, with that of commercial pharmaceutical forms
Santiago TA, Palma RA, Quirino BCT, Castrillón RLE, Juárez SJJ, Castañeda SJI
Language: Spanish
References: 24
Page: 5-11
PDF size: 267.87 Kb.
ABSTRACT
Introduction: Glycerol monooleate (GMO) is a polar lipid known as a drug permeation enhancer through the skin; its action being explained among other factors, by its interaction with the phospholipid bilayers of the epidermis; which, like the GMO, can exist in different liquid-crystalline mesophases. Previous research has shown that GMO and its derivatives marketed as polyfunctional excipients, are dispersed in water to form liquid nanostructured lyotropic crystalline mesophiles (NCLL) cubic (cubosomes) or hexagonal (hexosomes); thus achieving, due to its similarity with the lipids of the epidermis, increasing the probability of corneal-dermal retention and/or the transdermal absorption of drugs.
Objective: Formulate and compare an antifungal agent with topical therapeutic activity with commercial presentations.
Material and methods: In this work, nano-sized lyotropic liquid crystals (NCLLs) containing ketoconazole (KTZ) were elaborated, their antifungal effect was evaluated and compared with the effect of KTZ in commercial presentations (200 mg tablets and 2% oral suspension).
Results: The NCLLs + KTZ system showed a higher antifungal effect than commercial preparations and due to the relative simplicity of its elaboration, as well as the advantage represented by its topical application design, represents a safer and more effective alternative for the treatment of mycoses with ketoconazole, and other nanometric systems currently under development.
Conclusion: A good antifungal potency of ketoconazole was achieved when incorporated into NCLLs (CMI 24 µg/mL KTZ), so that NCLLs are a good option as a drug carrier system.
REFERENCES
Ermarkov S, Beletskii A, Eismont O, Nikolaev V. Liquid crystals in biotribology: synovial joint treatment. Biological and medical physics, biomedical engineering. Springer Int. Pub, Switzerland. 2016, pp. 37-56.
Sallam AS, Khalil E, Ibrahim H. Formulation of an oral dosage form utilizing the properties of cubic liquid crystalline phases of glyceryl monooleate. Eur J Pharm Biopharm. 2002; 53: 343-352.
Quirino-Barreda CT, Gazga-Urioste C, Juárez-Sandoval JJ, Faustino-Vega A, Noguez-Méndez NA, Macín-Cabrera SA y cols. Cristales líquidos liotrópicos. Nanoestructuras biomiméticas para uso tópico medicinal. MundoNano. 2017; 10: 7-25.
Ganem-Quintanar A, Quintanar-Guerrero D, Buri P. Monoolein: a review of the pharmaceutical applications. Drug Dev Ind Pharm. 2000; 26: 809-820.
Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta. 2006; 1758: 2080-2095.
Ferreira DA, Bentley MVL, Karlsson G, Edwards K. Cryo-TEM investigation of phase behaviour and aggregate structure in dilute dispersions of monoolein and oleic acid. Int J Pharm. 2006; 310: 203-212.
Lopes LB, Speretta FF, Bentley MV. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci. 2007; 32: 209-215.
Hielscher T. Ultrasonic production of nano-size dispersions and emulsions. TIMA Editions, 2005; pp. 138-143.
Gon DL, Wook WJ, Ah NK, Yeul JL, Hoon SL, Sun WS et al. Effect of the glyceryl monooleate-based lyotropic phases on skin permeation using in vitro diffusion and skin imaging. Asian Journal of Pharmaceutical Sciences. 2014; 9: 324-329.
Quirino BC, Noguez MN, Rivera BE, Gazga UC, Pérez HG, Maldonado Campos JF, Palma RA, Castrilón RL, Juárez SJ, Santiago TA, Faustino VA, Gutiérrez ZA, Macín CS, Rubio MA, Ramírez PJ, Campos TJ. Composición tópica con base en cristales líquidos liotrópicos IMPI. No. Expediente: MX/a/2015/009845; Folio: MX/E/2015/054803. De fecha 30 de julio 2015. México.
Zhang L, Pornpattananangul D, Hu CM, Huan CM. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010; 17: 585-594.
Güngör S, Sedef Erdal M, Aksu B. New formulation strategies in topical antifungal therapy. Journal of Cosmetics, Dermatological Sciences and Applications. 2013; 3: 56-65.
Faustino-Vega A, Quirino-Barreda CT, Vega-Rodríguez KD. Efecto del ketoconazol incluido en nanopartículas lipídicas sólidas en Candida albicans. Investigación Universitaria Multidisciplinaria. 2013; 12: 95-102.
Jaya Raja Kumar K, Selvadurai M, Subramani P. Antifungal agents: new approach for novel delivery systems. J Pharm Sci Res. 2014; 6: 229-235.
Francisco Tejada Cifuentesa. Hepatotoxicidad por Fármacos. Revista Clínica de Medicina de Familia. 2010; 3 (3) 177-191.
Larrondo MR, González AA, Hernández GL. Micosis superficiales. Candidiasis y pitiriasis versicolor. Rev Cubana Med Gen Integr. 2001; 17: 565-571.
Crespo EV, Delgado FV. Micosis cutáneas. Med Clin. 2005; 125: 467-474.
Gregory B. Structure and activity of the antifungal agents. Rev Cubana Farm. 2005; 39: 1-16.
Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol. 1966; 45: 493-496.
Rastogi R, Anand S, Koul V. Flexible polymerosomes an alternative vehicle for topical delivery. Colloids Surf B Biointerfaces. 2009; 72: 161-166.
Pasquali R, Bregni C. Structure of the main liquid crystalline lyotropic phases. Acta Farm Bonaerense. 2005; 24: 219-237.
Nesseem DI. Formulation and evaluation of itraconazole via liquid crystal for topical delivery system. J Pharm Biomed Anal. 2001; 26: 387-399.
Makai M, Csányi E, Németh Z, Pálinkás J, Erós I. Structure and drug release of lamellar liquid crystals containing glycerol. Int J Pharm. 2003; 256: 95-107.
Pavelic Z, Skalko BN, Jalsenjak I. Liposomes for treatment of vaginal infections. Eur J Pharm Sci. 1999; 8: 345-351.