2018, Number S1
<< Back Next >>
salud publica mex 2018; 60 (S1)
Spatial analysis of buildings damaged by the S19-2017 earthquake in Mexico City
Garrocho C, Campos-Alanís J, Chávez-Soto T
Language: Spanish
References: 14
Page: 31-40
PDF size: 805.35 Kb.
ABSTRACT
Our senses have an important capacity to detect spatial patterns,
but their limitations are enormous, as Cognitive Psychology
and Gestalt have shown for a long time. Therefore, more
accurate and reliable instruments are required than our pure
senses to identify patterns and act accordingly. Spatial analysis
offers several alternatives to identify territorial patterns, estimating
their statistical significance, minimizing the possibility
of perceiving illusory patterns. This work uses cutting edge
developments in conceptual, methodological and technology
matters to: a) identify with spatial statistics the clusters of
damaged buildings by the earthquake of 19S-2017 in Mexico
City (CDMX). The strategy is based on a sequence of zooms
at various geographic scales: from the global scale for the entire
México City (CDMX), through delegation, neighborhood
and block scales, until reaching the minimum scale: buildings;
b) locate Emergency Mobile Units using location-allocation
models; and c) compare the spatial patterns of collapsed and
damaged buildings by the great earthquakes of 1985 and 2017.
The results of this work may guide reconstruction, policy actions
and research efforts towards spatially and statistically
significant priority areas.
REFERENCES
Garrocho C, Campos J. Réquiem por los indicadores no espaciales de segregación residencial. Papeles de Población. 2013;19(77):269-300.
Anselin L. Exploring data with GeoDa: A workbook. University of Illinois, Center of Spatially Integrated Social Sciences, 2005.
Wong D. Spatial indices of segregation, Urban Studies. 1993;30:559-72. https://doi.org/10.1080/00420989320080551
Lee J, Wong D. Statistical analysis with ArcView GIS. Hoboken, New Jersey: John Wiley & Sons; 2001.
ESRI. ArcGIS for desktop, help center. [Internet] [consultado 4 de abril de 2015]. Disponible en: http://desktop.arcgis.com/es/desktop
Harries, K. Mapping crime: Principle and practice. Washington DC: US Department of Justice, 1999.
Eck JE, Chainey S, Cameron JG, Leitner M, Wilson RE. Mapping crime: Understanding hotspots. Washington, DC: US Department of Justice; 2005.
Stangeland P, de los Santos J. El mapa del crimen: herramientas geográficas para policías y criminólogos. Tirant lo Blanch; 2004.
Wong D. Geostatistics as measures of spatial segregation, Urban Geography. 1999;20(7):635-647.https://doi.org/10.2747/0272-3638.20.7.635
Garrocho C, Campos J. Organización espacial del sistema bancario dentro de la ciudad: estrategia territorial, accesibilidad y factores de localización. Economía, Sociedad y Territorio. 2010;10(33):413-453.
Garrocho C, Campos J. Segregación socioespacial de la población mayor. La dimensión desconocida del envejecimiento. Zinacantepec, México: El Colegio Mexiquense, AC, 2016.
Instituto Nacional de Estadística y Geografía. Censo de Población y Vivienda 2010. Principales resultados por AGEB y manzana urbana. [Internet] INEGI, 2010 [consultado sep 22, 2017] Disponible en: http://www3. inegi.org.mx/sistemas/microdatos/Encuestas.aspx?c=34553
Bailey TC, Gatrell AC. Interactive spatial data analysis. Essex (UK): Longman Scientific & Technical, 1995.
Garrocho C. Dinámica de las ciudades de México en el siglo XXI: Cinco vectores clave para el desarrollo sostenible. DF, México: El Colegio Mexiquense, AC, Consejo Nacional de Población, Fondo de Población de las Naciones Unidas, 2013