2017, Number 1
<< Back Next >>
Ann Hepatol 2017; 16 (1)
Bile Acid Physiology
Di Ciaula A, Garruti G, Lunardi BR, Molina-Molina E, Bonfrate L, Wang DQH, Portincasa P
Language: English
References: 92
Page: 4-14
PDF size: 1752.03 Kb.
ABSTRACT
The primary bile acids (BAs) are synthetized from cholesterol in the liver, conjugated to glycine or taurine to increase their solubility,
secreted into bile, concentrated in the gallbladder during fasting, and expelled in the intestine in response to dietary fat. BAs are also
bio-transformed in the colon to the secondary BAs by the gut microbiota, reabsorbed in the ileum and colon back to the liver, and
minimally lost in the feces. BAs in the intestine not only regulate the digestion and absorption of cholesterol, triglycerides, and fatsoluble
vitamins, but also play a key role as signaling molecules in modulating epithelial cell proliferation, gene expression, and lipid
and glucose metabolismby activating farnesoid X receptor (FXR) and G-protein-coupled bile acid receptor-1 (GPBAR-1, also known
as TGR5) in the liver, intestine, muscle and brown adipose tissue. Recent studies have revealed the metabolic pathways of FXR and
GPBAR-1 involved in the biosynthesis and enterohepatic circulation of BAs and their functions as signaling molecules on lipid and
glucose metabolism.
REFERENCES
Li T, Chiang JYL. Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacological Reviews 2014; 66: 948.
Wang DQH, Neuschwander-Tetri BA, Portincasa P. The Biliary System. 2nd Ed. Morgan & Claypool Life Sciences; 2017.
Ponz De Leon M, Murphy G, Dowling RH. Physiological factors influencing serum bile acid levels. Gut 1978; 19: 32-9.
Schalm SW, LaRusso NF, Hofmann AF, Hoffman NE, van Berge-Henegouwen GP, Korman MG. Diurnal serum levels of primary conjugated bile acids. Assessment by specific radioimmunoassays for conjugates of cholic and chenodeoxycholic acid. Gut 1978; 19: 1006-14.
LaRusso NF, Korman MG, Hoffman NE, Hofmann AF. Dynamics of the enterohepatic circulation of bile acids. Postprandial serum concentrations of conjugates of cholic acid in health, cholecystectomized patients, and patients with bile acid malabsorption. N Engl J Med 1974; 291: 689-92.
Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47: 241-59.
Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids 2014; 86: 62-8.
Portincasa P, Di Ciaula A, Wang HH, Palasciano G, van Erpecum KJ, Moschetta A, Wang DQ. Coordinate regulation of gallbladder motor function in the gut-liver axis. Hepatology 2008; 47: 2112-26.
Wahlström A, Sayin SI, Marschall H-U, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016; 24: 41-50.
Alnouti Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 2009; 108: 225-46.
Bathena SP, Mukherjee S, Olivera M, Alnouti Y. The profile of bile acids and their sulfate metabolites in human urine and serum. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 942-943: 53-62.
Wang TY, Liu M, Portincasa P, Wang DQ. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest 2013; 43: 1203-23.
Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999; 159: 2647-58.
Gong Z, Zhou J, Zhao S, Tian C, Wang P, Xu C, Chen Y, et al. Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget 2016; 7: 83951-63.
Tremblay S, Romain G, Roux M, Chen XL, Brown K, Gibson DL, Ramanathan S, et al. Bile Acid Administration Elicits an Intestinal Antimicrobial Program and Reduces the Bacterial Burden in Two Mouse Models of Enteric Infection. Infect Immun 2017; 85.
Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, et al. Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome. Immunity 2016; 45: 802-16.
Zhu C, Fuchs CD, Halilbasic E, Trauner M. Bile acids in regulation of inflammation and immunity: friend or foe? Clin Exp Rheumatol 2016; 34: 25-31.
Dossa AY, Escobar O, Golden J, Frey MR, Ford HR, Gayer CP. Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. Am J Physiol Gastrointest Liver Physiol 2016; 310: G81-92.
Yokota A, Fukiya S, Islam KB, Ooka T, Ogura Y, Hayashi T, Hagio M, et al. Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes 2012; 3: 455-9.
De Fabiani E, Mitro N, Gilardi F, Galmozzi A, Caruso D, Crestani M. When food meets man: the contribution of epigenetics to health. Nutrients 2010; 2: 551-71.
Wang DQ, Portincasa P, Tso P. Transintestinal cholesterol excretion (TICE): A secondary, non-biliary pathway contributing to reverse cholesterol transport. Hepatology 2017.
Mazer NA, Carey MC, Kwasnick RF, Benedek GB. Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry 1979; 18: 3064-75.
Somjen GJ, Marikovsky Y, Lelkes P, Gilat T. Cholesterolphospholipid vesicles in human bile: an ultrastructural study. Biochim.Biophys.Acta 1986; 879: 14-21.
Somjen GJ, Gilat T. Contribution of vesicular and micellar carriers to cholesterol transport in human bile. J Lipid Res 1985; 26: 699-704.
Carey MC, Small DM. The physical chemistry of cholesterol solubility in bile. Relation to gallstone formation and dissolution in man. J Clin Invest 1978; 61: 998-1026.
Holzbach RT. Metastability behavior of supersaturated bile. Hepatology 1984; 4: 155S-8S.
Olszewski MF, Holzbach RT, Saupe A, Brown GH. Liquid crystals in human bile. Nature 1973; 242: 336-7.
Holzbach RT, Corbusier C. Liquid crystals and cholesterol nucleation during equilibration in supersaturated bile analogs. Biochim.Biophys.Acta 1978; 528: 436-44.
Wang X, Luo S, Liu Y. Effects of changes of plasma motilin level on the motility of gallbladder in patients with chronic renal failure. Chung.Hua.Nei.Ko.Tsa.Chih 1996; 35: 86-8.
Portincasa P, Moschetta A, Palasciano G. Cholesterol gallstone disease. Lancet 2006; 368: 230-9.
Wang DQH, Portincasa P (eds.). Gallstones. Recent advances in epidemiology, pathogenesis, diagnosis and management. 1st ed. New York, NY: Nova Science Publisher Inc.; 2017, p. 1-676.
Portincasa P, Di Ciaula A, de Bari O, Garruti G, Palmieri VO, Wang DQ. Management of gallstones and its related complica tions. Expert Rev Gastroenterol Hepatol 2016; 10: 93-112.
Bonfrate L, Tack J, Grattagliano I, Cuomo R, Portincasa P. Microbiota in health and irritable bowel syndrome: current knowledge, perspectives and therapeutic options. Scand J Gastroenterol 2013; 48: 995-1009.
Portincasa P, Bonfrate L, de Bari O, Lembo A, Ballou S. Irritable bowel syndrome and diet. Gastroenterol Rep (Oxf) 2017.
Long SL, Gahan CGM, Joyce SA. Interactions between gut bacteria and bile in health and disease. Mol Aspects Med 2017; 56: 54-65.
Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, Wang S, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer 2017; 140: 2545-56.
Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, Yu RT, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA 2006; 103: 3920-5.
Ou J, DeLany JP, Zhang M, Sharma S, O’Keefe SJ. Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr Cancer 2012; 64: 34-40.
Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 2016; 7: 201-15.
O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 2015; 6: 6342.
Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ, Steurer-Stey C, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 2013; 8: e59260.
Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A, Engen PA, Kwasny M, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 2012; 302: G966-78.
Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways. Chem Res Toxicol 2017; 30: 996-1005.
Gao B, Bian X, Mahbub R, Lu K. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environ Health Perspect 2017; 125: 198-206.
Joly C, Gay-Queheillard J, Leke A, Chardon K, Delanaud S, Bach V, Khorsi-Cauet H. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in the rat. Environ Sci Pollut Res Int 2013; 20: 2726-34.
Joly Condette C, Bach V, Mayeur C, Gay-Queheillard J, Khorsi-Cauet H. Chlorpyrifos Exposure During Perinatal Period Affects Intestinal Microbiota Associated With Delay of Maturation of Digestive Tract in Rats. J Pediatr Gastroenterol Nutr 2015; 61: 30-40.
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505: 559-63.
Higashimura Y, Naito Y, Takagi T, Uchiyama K, Mizushima K, Ushiroda C, Ohnogi H, et al. Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. Am J Physiol Gastrointest Liver Physiol 2016; 310: G367-75.
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30: 332-8.
Xie G, Wang X, Huang F, Zhao A, Chen W, Yan J, Zhang Y, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer 2016; 139: 1764-75.
Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362-5.
Liu H, Hu C, Zhang X, Jia W. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J Diabetes Invest 2017.
Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap— bile acids in metabolic control. Nat Rev Endocrinol 2014; 10: 488-98.
Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 1365-8.
Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000; 6: 517-26.
Wang L, Lee YK, Bundman D, Han Y, Thevananther S, Kim CS, Chua SS, et al. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2002; 2: 721-31.
Mazidi M, de Caravatto PP, Speakman JR, Cohen RV. Mechanisms of Action of Surgical Interventions on Weight-Related Diseases: the Potential Role of Bile Acids. Obes Surg 2017; 27: 826-36.
Festa C, De Marino S, Carino A, Sepe V, Marchiano S, Cipriani S, Di Leva FS, et al. Targeting Bile Acid Receptors: Discovery of a Potent and Selective Farnesoid X Receptor Agonist as a New Lead in the Pharmacological Approach to Liver Diseases. Front Pharmacol 2017; 8: 162.
de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab 2013; 17: 657- 69.
Liu N, Zhao J, Wang J, Teng H, Fu Y, Yuan H. Farnesoid X receptor ligand CDCA suppresses human prostate cancer cells growth by inhibiting lipid metabolism via targeting sterol response element binding protein 1. Am J Transl Res 2016; 8: 5118-24.
Barrasa JI, Olmo N, Lizarbe MA, Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol In Vitro 2013; 27: 964-77.
Schaap FG, Trauner M, Jansen PLM. Bile acid receptors as targets for drug development. Nature Reviews Gastroenterology & Hepatology 2013; 11: 55-67.
Chiang JY. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev 2002; 23: 443-63.
Chiang JY. Regulation of bile acid synthesis. Front Biosci 1998; 3: d176-d93.
Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 2004; 40: 539- 51.
Miao J, Choi SE, Seok SM, Yang L, Zuercher WJ, Xu Y, Willson TM, et al. Ligand-Dependent Regulation of the Activity of the Orphan Nuclear Receptor, Small Heterodimer Partner (SHP), in the Repression of Bile Acid Biosynthetic CYP7A1 and CYP8B1 Genes. Mol Endocrinol 2011; 25: 1159-69.
Pircher PC, Kitto JL, Petrowski ML, Tangirala RK, Bischoff ED, Schulman IG, Westin SK. Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem 2003; 278: 27703-11.
Solaas K, Ulvestad A, Söreide O, Kase BF. Subcellular organization of bile acid amidation in human liver: a key issue in regulating the biosynthesis of bile salts. J Lipid Res 2000; 41: 1154-62.
Aguilar-Olivos NE, Carrillo-Cordova D, Oria-Hernandez J, Sanchez-Valle V, Ponciano-Rodriguez G, Ramirez-Jaramillo M, Chable-Montero F, et al. The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease. Ann Hepatol 2015; 14: 487-93.
Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, Mc- Donald JG, Luo G, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2: 217-25.
Jones S. Mini-review: endocrine actions of fibroblast growth factor 19. Mol Pharm 2008; 5: 42-8.
Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003; 17: 1581-91.
Kim I, Ahn S-H, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 2007; 48: 2664-72.
Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science 2001; 294: 1866-70.
Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 2001; 276: 15816-22.
Dent P, Han SI, Mitchell C, Studer E, Yacoub A, Grandis J, Grant S, et al. Inhibition of insulin/IGF-1 receptor signaling enhances bile acid toxicity in primary hepatocytes. Biochem Pharmacol 2005; 70: 1685-96.
Garruti G, Wang HH, Bonfrate L, de Bari O, Wang DQ, Portincasa P. A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J Lipids 2012; 2012: 304292.
Modica S, Murzilli S, Salvatore L, Schmidt DR, Moschetta A. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res 2008; 68: 9589-94.
Modica S, Gofflot F, Murzilli S, D’Orazio A, Salvatore L, Pellegrini F, Nicolucci A, et al. The intestinal nuclear receptor signature with epithelial localization patterns and expression modulation in tumors. Gastroenterology 2010; 138: 636-48. e12.
Luiking YC, Peeters TL, Stolk MFJ, Nieuwenhuijs VB, Portincasa P, Depoortere I, vanBerge-Henegouwen GP, et al. Motilin induces gall bladder emptying and antral contractions in the fasted state in humans. Gut 1998; 42: 830-5.
Portincasa P, Peeters TL, Berge-Henegouwen GP, Van Solinge WW, Palasciano G, van Erpecum KJ. Acute intraduodenal bile salt depletion leads to strong gallbladder contraction, altered antroduodenal motility and high plasma motilin levels in humans. Neurogastroenterol Motil 2000; 12: 421-30.
Housset C, Chrétien Y, Debray D, Chignard N. Functions of the Gallbladder. Compr Physiol 2016: 6(3): 1549-77.
Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, Suino-Powell K, et al. Identification of a hormonal basis for gallbladder filling. Nat Med 2006; 12: 1253-5.
Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res 2009; 50: 2340-57.
Brighton CA, Rievaj J, Kuhre RE, Glass LL, Schoonjans K, Holst JJ, Gribble FM, et al. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein- Coupled Bile Acid Receptors. Endocrinology 2015; 156: 3961-70.
Bjorkhem I, Blomstrand R, Lewenhaupt A, Svensson L. Effect of lymphatic drainage on 7alpha-hydroxylation of cholesterol in rat liver. Biochem Biophys Res Commun 1978; 85: 532-40.
Kemper JK. Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta 2011; 1812: 842-50.
Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6: 507-15.
Nishimaki-Mogami T, Une M, Fujino T, Sato Y, Tamehiro N, Kawahara Y, Shudo K, et al. Identification of intermediates in the bile acid synthetic pathway as ligands for the farnesoid X receptor. J Lipid Res 2004; 45: 1538-45.
Modica S, Bellafante E, Moschetta A. Master regulation of bile acid and xenobiotic metabolism via the FXR, PXR and CAR trio. Frontiers in bioscience (Landmark edition) 2008; 14: 4719-45.
Wagner M, Zollner G, Trauner M. New molecular insights into the mechanisms of cholestasis. J Hepatol 2009; 51: 565-80.
Ory DS. Nuclear receptor signaling in the control of cholesterol homeostasis: have the orphans found a home? Circ Res 2004; 95: 660-70.