2017, Number 1
<< Back Next >>
Ann Hepatol 2017; 16 (1)
Bile Acids in the Treatment of Cardiometabolic Diseases
Vítek L
Language: English
References: 95
Page: 43-52
PDF size: 169.10 Kb.
ABSTRACT
Bile acids (BA), for decades considered only to have fat-emulsifying functions in the gut lumen, have recently emerged as novel cardio-
metabolic modulators. They have real endocrine effects, acting via multiple intracellular receptors in various organs and tissues.
BA affect energy homeostasis through the modulation of glucose and lipid metabolism, predominantly by activating the nuclear farnesoid
X receptor (FXR), as well as the cytoplasmic membrane G protein-coupled BA receptor TGR5 in a variety of tissues; although
numerous other intracellular targets of BA are also in play.The roles of BA in the pathogenesis of diabetes, obesity,
metabolic syndrome, and cardiovascular diseases are seriously being considered, and BA and their derivatives seem to represent
novel potential therapeutics to treat these diseases of civilization.
REFERENCES
Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014; 66: 948-83.
Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, et al. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta 2015; 1851: 19-29.
Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006; 25: 1419-25.
Ikemoto S, Takahashi M, Tsunoda N, Maruyama K, Itakura H, Kawanaka K, Tabata I, et al. Cholate inhibits high-fat diet-induced hyperglycemia and obesity with acyl-CoA synthetase mRNA decrease. Am J Physiol 1997; 273: E37-45.
Hofmann AF. Chemistry and enterohepatic circulation of bile acids. Hepatology 1984; 4: 4S-14S.
Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal 2010; 8: e005.
Zwicker BL, Agellon LB. Transport and biological activities of bile acids. Int J Biochem Cell Biol 2013; 45: 1389-98.
Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003; 17: 1581-91.
Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 2012; 26: 312-24.
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115: 1627-35.
Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143: 1741-7.
Lenart-Lipinska M, Duma D, Halabis M, Dziedzic M, Solski J. Fibroblast growth factor 21 - a key player in cardiovascular disorders? Horm Mol Biol Clin Investig 2016; 30.
Barrera F, Azocar L, Molina H, Schalper KA, Ocares M, Liberona J, Villarroel L, et al. Effect of cholecystectomy on bile acid synthesis and circulating levels of fibroblast growth factor 19. Ann Hepatol 2015; 14: 710-21.
Hawthorne GC, Ashworth L, Alberti KG. The effect of laparoscopic cholecystectomy on insulin sensitivity. Horm Metab Res 1994; 26: 474-7
Kwak MS, Kim D, Chung GE, Kim W, Kim YJ, Yoon JH. Cholecystectomy is independently associated with nonalcoholic fatty liver disease in an Asian population. World J Gastroenterol 2015; 21: 6287-95.
Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids 2014; 86C: 62-68.
Vitek L, Haluzik M. The role of bile acids in metabolic regulation. J Endocrinol 2016; 228: R85-96.
Wada E, Koyanagi S, Kusunose N, Akamine T, Masui H, Hashimoto H, Matsunaga N, et al. Modulation of peroxisome proliferator-activated receptor-alpha activity by bile acids causes circadian changes in the intestinal expression of Octn1/Slc22a4 in mice. Mol Pharmacol 2015; 87: 314-22.
Takigawa T, Miyazaki H, Kinoshita M, Kawarabayashi N, Nishiyama K, Hatsuse K, Ono S, et al. Glucocorticoid receptor- dependent immunomodulatory effect of ursodeoxycholic acid on liver lymphocytes in mice. Am J Physiol Gastrointest Liver Physiol 2013; 305: G427-38.
Parker HE, Wallis K, le Roux CW, Wong KY, Reimann F, Gribble FM. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br J Pharmacol 2012; 165: 414-23.
Chen X, Xu H, Ding L, Lou G, Liu Y, Yao Y, Chen L, et al. Identification of miR-26a as a target gene of bile acid receptor GPBAR-1/TGR5. PLoS One 2015; 10: e0131294.
Fu X, Dong B, Tian Y, Lefebvre P, Meng Z, Wang X, Pattou F, et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest 2015; 125: 2497-509.
Krattinger R, Bostrom A, Lee SM, Thasler WE, Schioth HB, Kullak-Ublick GA, Mwinyi J. Chenodeoxycholic acid significantly impacts the expression of miRNAs and genes involved in lipid, bile acid and drug metabolism in human hepatocytes. Life Sci 2016; 156: 47-56.
Woting A, Blaut M. The Intestinal Microbiota in Metabolic Disease. Nutrients 2016; 8: 202.
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027-31.
Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014; 4: e121.
Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol 2014; 30: 332-8.
Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, Gaskins HR, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 2013; 98: 111-20.
Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014; 63: 1513-21.
Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, Correa A, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res 2016; 119(8): 956-64.
Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, Dahl CP, Aukrust P, et al. Increased secondary/primary bile acid ratio in chronic heart failure. J Card Fail 2017; 23(9): 666-71.
Sun W, Zhang D, Wang Z, Sun J, Xu B, Chen Y, Ding L, et al. Insulin resistance is associated with total bile acid level in type 2 diabetic and nondiabetic population: a cross-sectional study. Medicine (Baltimore) 2016; 95: e2778.
Brufau G, Bahr MJ, Staels B, Claudel T, Ockenga J, Boker KH, Murphy EJ, et al. Plasma bile acids are not associated with energy metabolism in humans. Nutr Metab (Lond) 2010; 7: 73.
Cariou B, Chetiveaux M, Zair Y, Pouteau E, Disse E, Guyomarc'h-Delasalle B, Laville M, et al. Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr Metab (Lond) 2011; 8: 48.
Taylor DR, Alaghband-Zadeh J, Cross GF, Omar S, le Roux CW, Vincent RP. Urine bile acids relate to glucose control in patients with type 2 diabetes mellitus and a body mass index below 30 kg/m2. PLoS One 2014; 9: e93540.
Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977; 296: 1365- 1371.
Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes 2013; 62: 4184-91.
Vincent RP, Omar S, Ghozlan S, Taylor DR, Cross G, Sherwood RA, Fandriks L, et al. Higher circulating bile acid concentrations in obese patients with type 2 diabetes. Ann Clin Biochem 2013; 50: 360-4.
Li T, Francl JM, Boehme S, Ochoa A, Zhang Y, Klaassen CD, Erickson SK, et al. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J Biol Chem 2012; 287: 1861-73.
Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 2008; 105: 13580-5.
Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, Hill C, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 2014; 111: 7421-6.
Jones ML, Tomaro-Duchesneau C, Martoni CJ, Prakash S. Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin Biol Ther 2013; 13: 631-42.
Grunhage F, Lammert F. The fate of fatty liver disease: of bile and fatty acids. Ann Hepatol 2013; 12: 642-3.
Aguilar-Olivos NE, Carrillo-Cordova D, Oria-Hernandez J, Sanchez-Valle V, Ponciano-Rodriguez G, Ramirez-Jaramillo M, Chable-Montero F, et al. The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease. Ann Hepatol 2015; 14: 487-93.
Haeusler RA, Camastra S, Nannipieri M, Astiarraga B, Castro- Perez J, Xie D, Wang L, et al. Increased bile acid synthesis and impaired bile acid transport in human obesity. J Clin Endocrinol Metab 2016; 101: 1935-44.
Haluzikova D, Lacinova Z, Kavalkova P, Drapalova J, Krizova J, Bartlova M, Mraz M, et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obesity (Silver Spring) 2013; 21: 1335-42.
Kavalkova P, Mraz M, Trachta P, Klouckova J, Cinkajzlova A, Lacinova Z, Haluzikova D, et al. Endocrine effects of duodenal- jejunal exclusion in obese patients with type 2 diabetes mellitus. J Endocrinol 2016; 231: 11-22.
Cole AJ, Teigen LM, Jahansouz C, Earthman CP, Sibley SD. The Influence of Bariatric Surgery on Serum Bile Acids in Humans and Potential Metabolic and Hormonal Implications: a Systematic Review. Curr Obes Rep 2015; 4: 441-50.
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439: 484-9.
Zietak M, Kozak LP. Bile acids induce uncoupling protein 1- dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am J Physiol Endocrinol Metab 2016; 310: E346-354.
Teodoro JS, Zouhar P, Flachs P, Bardova K, Janovska P, Gomes AP, Duarte FV, et al. Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. Int J Obes (Lond) 2014; 38: 1027-34.
Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313: 1137-40.
Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, Patterson BW, et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 2010; 59: 1899-905.
Ratziu V, de Ledinghen V, Oberti F, Mathurin P, Wartelle- Bladou C, Renou C, Sogni P, et al. A randomized controlled trial of high-dose ursodesoxycholic acid for nonalcoholic steatohepatitis. J Hepatol 2011; 54: 1011-19.
Leuschner UF, Lindenthal B, Herrmann G, Arnold JC, Rossle M, Cordes HJ, Zeuzem S, et al. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 2010; 52: 472-9.
Hanafi NI, Mohamed AS, Md Noor J, Abdu N, Hasani H, Siran R, Osman NJ, et al. Ursodeoxycholic acid upregulates ERK and Akt in the protection of cardiomyocytes against CoCl2. Genet Mol Res 2016; 15.
Chung J, Kim KH, Lee SC, An SH, Kwon K. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow. Mol Cells 2015; 38: 851-8.
Staels B, Kuipers F. Bile acid sequestrants and the treatment of type 2 diabetes mellitus. Drugs 2007; 67: 1383-92.
Suzuki T, Oba K, Futami-Suda S, Suzuki K, Ouchi M, Igari Y, Matsumura N, et al. Effects of colestimide on blood glucoselowering activity and body weight in patients with type 2 diabetes and hypercholesterolemia. J Nippon Med Sch 2007; 74: 81-4.
Harach T, Pols TW, Nomura M, Maida A, Watanabe M, Auwerx J, Schoonjans K. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep 2012; 2: 430.
Dayer-Berenson L, Finckenor M. Expanded colesevelam administration options with oral suspension formulation for patients with diabetes and hypercholesterolemia. Postgrad Med 2014; 126: 126-34.
Ooi CP, Loke SC. Colesevelam for Type 2 diabetes mellitus: an abridged Cochrane review. Diabet Med 2014; 31: 2-14.
Bronden A, Hansen M, Sonne DP, Rohde U, Vilsboll T, Knop FK. Sevelamer in a diabetologist’s perspective: a phosphatebinding resin with glucose-lowering potential. Diabetes Obes Metab 2015; 17: 116-20.
Braunlin W, Zhorov E, Guo A, Apruzzese W, Xu Q, Hook P, Smisek DL, et al. Bile acid binding to sevelamer HCl. Kidney Int 2002; 62: 611-19.
McGettigan BM, McMahan RH, Luo Y, Wang XX, Orlicky DJ, Porsche C, Levi M, et al. Sevelamer improves steatohepatitis, inhibits liver and intestinal farnesoid X receptor (FXR), and reverses innate immune dysregulation in a mouse model of non-alcoholic fatty liver disease. J Biol Chem 2016; 291: 23058-67.
Psichas A, Little T, Lal S, McLaughlin J. Colestyramine slows gastric emptying of liquids and reduces appetite in healthy subjects. Neurogastroenterol Motil 2012; 24: 1095- 101.
Chen L, Yao X, Young A, McNulty J, Anderson D, Liu Y, Nystrom C, et al. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol Endocrinol Metab 2012; 302: E68-76.
Wu Y, Aquino CJ, Cowan DJ, Anderson DL, Ambroso JL, Bishop MJ, Boros EE, et al. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J Med Chem 2013; 56: 5094-114.
Park J, Al-Hilal TA, Jeong JH, Choi J, Byun Y. Design, Synthesis, and Therapeutic Evaluation of Poly(acrylic acid)-tetraDOCA Conjugate as a Bile Acid Transporter Inhibitor. Bioconjug Chem 2015; 26: 1597-605.
Nunez DJ, Yao X, Lin J, Walker A, Zuo P, Webster L, Krug- Gourley S, et al. Glucose and lipid effects of the ileal apical sodium-dependent bile acid transporter inhibitor GSK2330672: double-blind randomized trials with type 2 diabetes subjects taking metformin. Diabetes Obes Metab 2016; 18: 654-62.
Rudling M, Camilleri M, Graffner H, Holst JJ, Rikner L. Specific inhibition of bile acid transport alters plasma lipids and GLP-1. BMC Cardiovasc Disord 2015; 15: 75.
Carter D, Howlett HC, Wiernsperger NF, Bailey CJ. Differential effects of metformin on bile salt absorption from the jejunum and ileum. Diabetes Obes Metab 2003; 5: 120-5.
Napolitano A, Miller S, Nicholls AW, Baker D, Van Horn S, Thomas E, Rajpal D, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One 2014; 9: e100778.
Sepe V, Distrutti E, Limongelli V, Fiorucci S, Zampella A. Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Med Chem 2015; 7: 1109-1135.
Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013; 4: 2384.
Pavlovic N, Stankov K, Mikov M. Probiotics-interactions with bile acids and impact on cholesterol metabolism. Appl Biochem Biotechnol 2012; 168: 1880-95.
Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acidmicrobiome endocrine aspects and therapeutics. Acta Pharm Sin B 2015; 5: 99-105.
Choi SB, Lew LC, Yeo SK, Nair Parvathy S, Liong MT. Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario. Crit Rev Biotechnol 2015; 35: 392-401.
Jones DE. Obeticholic acid for the treatment of primary biliary cirrhosis. Expert Rev Gastroenterol Hepatol 2016: 1-9.
Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta 2010; 1802: 363-72.
Seyer P, Vallois D, Poitry-Yamate C, Schutz F, Metref S, Tarussio D, Maechler P, et al. Hepatic glucose sensing is required to preserve beta cell glucose competence. J Clin Invest 2013; 123: 1662-76.
Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 2006; 103: 1006-11.
Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013; 145: 574-82 e571.
Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 2015; 385: 956-65.
Safadi R, Konikoff FM, Mahamid M, Zelber-Sagi S, Halpern M, Gilat T, Oren R, et al. The fatty acid-bile acid conjugate Aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014; 12: 2085-91 e2081.
Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci 2015; 72: 1631-50.
Bishop-Bailey D, Walsh DT, Warner TD. Expression and activation of the farnesoid X receptor in the vasculature. Proc Natl Acad Sci USA 2004; 101: 3668-73.
Chow EC, Magomedova L, Quach HP, Patel R, Durk MR, Fan J, Maeng HJ, et al. Vitamin D receptor activation down-regulates the small heterodimer partner and increases CYP7A1 to lower cholesterol. Gastroenterology 2014; 146: 1048-59.
Gao J, Xie W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci 2012; 33: 552-8.
Kwong E, Li Y, Hylemon PB, Zhou H. Bile acids and sphingosine- 1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm Sin B 2015; 5: 151-7.
Kumar DP, Rajagopal S, Mahavadi S, Mirshahi F, Grider JR, Murthy KS, Sanyal AJ. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun 2012; 427: 600-5.
Schittenhelm B, Wagner R, Kahny V, Peter A, Krippeit- Drews P, Dufer M, Drews G. Role of FXR in beta-cells of lean and obese mice. Endocrinology 2015; 156: 1263-71.
Gao J, He J, Zhai Y, Wada T, Xie W. The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity. J Biol Chem 2009; 284: 25984-92.
Yang TT, Chang CK, Tsao CW, Hsu YM, Hsu CT, Cheng JT. Activation of muscarinic M-3 receptor may decrease glucose uptake and lipolysis in adipose tissue of rats. Neurosci Lett 2009; 451: 57-9.
Hauge-Evans AC, Reers C, Kerby A, Franklin Z, Amisten S, King AJ, Hassan Z, et al. Effect of hyperglycaemia on muscarinic M3 receptor expression and secretory sensitivity to cholinergic receptor activation in islets. Diabetes Obes Metab 2014; 16: 947-56.