2018, Number 1
<< Back Next >>
Rev Mex Ortodon 2018; 6 (1)
Sensitivity and specificity of a radiographic, tomographic and digital model analysis for determining transverse discrepancies
Guerra GA, Fernández LA, Tavira FS, Meléndez OA, Escamilla VJ
Language: Spanish
References: 15
Page: 28-34
PDF size: 398.05 Kb.
ABSTRACT
Introduction: Diagnosis in orthodontics must be performed in the three planes of the space to achieve coordination and harmony of the dental arches at the end of treatment. Objective: To determine the sensitivity and specificity of the Ricketts’ PA radiographic analysis, the Penn cephalometric analysis and the Hayes model analysis with the CAC.
Material and methods: A descriptive, cross-sectional and comparative study was performed on 100 Cone-Beam CT scans, 100 posteroanterior radiographs and 100 digital models belonging to 50 patients with normal occlusion and 50 patients with skeletal transverse discrepancy. We performed the Ricketts’ PA radiographic analysis, the Penn cephalometric analyses and the Hayes model analyses with the CAC.
Results: In all transversal analyses comparisons, the sensitivity, specificity and predictive value of the positive and negative test exceeded 85%.
Conclusions: The Ricketts’ PA radiographic analysis has more diagnostic specificity; while the Penn cephalometric analysis and the Hayes model analysis with the CAC have more diagnostic sensitivity.
REFERENCES
Fernández J, Da Silva O. Atlas cefalometría y análisis facial. Madrid: Ripano Editorial Médica; 2009.
Rodríguez E, Casasa R, Natera A. 1001 tips de ortodoncia y sus secretos. Colombia: Amolca; 2007.
Ricketts R, Grummons D. Frontal cephalometrics: practical applications, part I. World J Orthod. 2003; 4 (4): 297-316.
Accorsi M, Velasco L. Diagnóstico en ortodoncia 3D: Tomografía cone-beam aplicada. Venezuela: Amolca; 2014.
Tamburrino R, Boucher N, Vanarsdall R, Secchi A. The transverse dimension: diagnosis and relevance to functional occlusion. RWISO. 2010; 2 (1): 11-19.
Hayes JL. In search of improved skeletal transverse diagnosis. Part 2: A new measurement technique used on 114 consecutive untreated patients. Orthodontic Practice US. 2010; 1 (4): 34-39.
Hayes JL. In search of improved skeletal transverse diagnosis. Part 1: Traditional measurement techniques. Orthodontic Practice US. 2010; 1 (3): 34-39.
Miner RM, Al Qabandi S, Rigali PH, Will LA. Cone-beam computed tomography transverse analyses. Part 2: Measures of performance. Am J Orthod Dentofacial Orthop. 2015; 148 (2): 253-263.
Miner RM, Al Qabandi S, Rigali PH, Will LA. Cone-beam computed tomography transverse analysis. Part I: Normative data. Am J Orthod Dentofacial Orthop. 2012; 142 (3): 300-307.
Sawchuk D, Currie K, Vich ML, Palomo JM, Flores-Mir C. Diagnostic methods for assessing maxillary skeletal and dental transverse deficiencies: A systematic review. Korean J Orthod. 2016; 46 (5): 331-342.
Leonardi R, Annunziata A, Caltabiano M. Landmark identification error in posteroanterior cephalometric radiography. A systematic review. Angle Orthod. 2008; 78 (4): 761-765.
Major PW, Johnson DE, Hesse KL, Glover KE. Landmark identification error in posterior anterior cephalometrics. Angle Orthod. 1994; 64 (6): 447-454.
Legrell PE, Nyquist H, Isberg A. Validity of identification of gonion and antegonion in frontal cephalograms. Angle Orthod. 2000; 70 (2): 157-164.
Savara BS, Tracy WE, Miller P. Analysis of Errors in cephalometric measurements of three-dimensional distances on the human mandible. Arch Oral Biology. 1966; 11 (2): 209-217.
Thilander B, Bjerklin K. Posterior crossbite and temporomandibular disorders (TMDs): need for orthodontic treatment? Eur J Orthod. 2012; 34 (6): 667-673.