2018, Number 1
<< Back Next >>
salud publica mex 2018; 60 (1)
Dengue virus infection induces chromatin remodeling at locus AAEL006536 in the midgut of Aedes aegypti
Gleason-Rodríguez G, Castillo-Méndez M, Maya K, Ramos-Castañeda J, Valverde-Garduño V
Language: English
References: 27
Page: 41-47
PDF size: 487.67 Kb.
ABSTRACT
Objective. To identify and characterize
Aedes aegypti’s
AAEL006536 gene proximal upstream cis-regulatory sequences
activated by dengue virus infection.
Materials and
methods. A. aegypti Rockefeller strain mosquitoes were
blood fed or infected with dengue virus 2. Open chromatin
profiling was then carried out in pools of midguts from each
group of mosquitoes.
Results. The proximal upstream region
does not contain open chromatin sites in the midguts
of blood-fed mosquitoes as detected by FAIRE-qPCR. In
contrast, two cis-regulatory sites were identified in the same
upstream region of dengue virus-infected mosquito midguts.
The distal sequence contains STAT-, REL- and C/EBP-type
transcription factor binding sites.
Conclusion. The activation
of two proximal cis-regulatory sequences, induced by
dengue virus infection, is mediated by chromatin remodeling
mechanisms. Binding sites suggest a dengue virus infectioninduced
participation of immunity transcription factors in
the up-regulation of this gene. This suggests the participation
of the AAEL006536 gene in the mosquito’s antiviral innate
immune response.
REFERENCES
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. https://doi.org/10.1038/nature12060
Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010;4(5):e646. https://doi.org/10.1371/journal. pntd.0000646
Reiner RC Jr., Achee N, Barrera R, Burkot TR, Chadee DD, Devine G J, et al. Quantifying the epidemiological impact of vector control on dengue. PLoS Negl Trop Dis. 2016;10(5):e0004588. https://doi.org/10.1371/journal. pntd.0004588
Bennett KE, Olson KE, Munoz ML, Fernandez-Salas I, Farfan-Ale JA, Higgs, S, et al. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg. 2002;67(1):85-92. https://doi.org/10.4269/ajtmh.2002.67.85
Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE, Beaty BJ. Dengue Virus Type 2: Replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 2007;7:9. https://doi.org/10.1186/1471-2180-7-9
Sim S, Jupatanakul N, Ramirez JL, Kang S, Romero-Vivas CM, Mohammed H, et al. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl Trop Dis. 2013;7(7):e2295. https://doi.org/10.1371/journal.pntd.0002295
Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, et al. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog. 2011;7(9):e1002189. https://doi.org/10.1371/journal.ppat.1002189
Behura SK, Severson DW. Intrinsic features of Aedes aegypti genes affect transcriptional responsiveness of mosquito genes to dengue virus Infection. Infect Genet Evol. 2012;12(7):1413-8. https://doi.org/10.1016/j. meegid.2012.04.027
Behura SK, Sarro J, Li P, Mysore K, Severson DW, Emrich SJ, et al. Highthroughput cis-regulatory element discovery in the vector mosquito Aedes aegypti. BMC genomics. 2016;17:341. https://doi.org/10.1186/ s12864-016-2468-x
Waterhouse R, Kriventseva EV, Meister S, Xi Z, Alvarez KS, Bartholomay LC, et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science. 2007;316(5832):1738-43. https://doi.org/10.1126/science.1139862
Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PloS One. 2012;7(11):e50512. https://doi. org/10.1371/journal.pone.0050512
Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. Strain variation in the transcriptome of the dengue fever vector, Aedes aegypti. G3 (Bethesda). 2012;2(1):103-14. https://doi.org/10.1534/ g3.111.001107
Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA. 2009;106(42):17841-6. https://doi.org/10.1073/pnas.0905006106
Rances E, Ye YH, Woolfit M, McGraw EA, O’Neill SL. The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Path. 2012;8(2):e1002548. https://doi.org/10.1371/ journal.ppat.1002548
Ramos-Castaneda J, Gonzalez C, Jimenez MA, Duran J, Hernandez- Martinez S, Rodriguez MH, et al. Effect of nitric oxide on dengue virus replication in Aedes aegypti and Anopheles albimanus. Intervirology. 2008;51(5):335-41. https://doi.org/10.1159/000175639
Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde- Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007;17:877-85. https:// doi.org/10.1101/gr.5533506
Nagy PL, Cleary ML, Brown PO, Lieb JD. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc Natl Acad Sci USA. 2003;100(11):6364-9. https://doi. org/10.1073/pnas.1131966100
Giresi PG, Lieb JD. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods. 2009;48(3):233-239. https://doi.org/10.1016/j. ymeth.2009.03.003
Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E. MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 2003;31(13):3576-9. https:// doi.org/10.1093/nar/gkg585
Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, et al. TRANSFAC: Transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31(1):374-8. https://doi.org/10.1093/nar/gkg108
Barillas-Mury C, Han YS, Seeley D, Kafatos FC. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBO J. 1999;18(4):959-67. https://doi.org/10.1093/ emboj/18.4.959
Frolet C, Thoma M, Blandin S, Hoffmann JA, Levashina EA. Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. Immunity. 2006;25(4):677-85. https:// doi.org/10.1016/j.immuni.2006.08.019
Eggleston P, Lu W, Zhao Y. Genomic Organization and immune regulation of the defensin gene from the mosquito, Anopheles gambiae. Insect Mol Biol. 2000;9:481-490. https://doi.org/10.1046/j.1365- 2583.2000.00212.x
Meredith JM, Munks RJ, Grail W, Hurd H, Eggleston P, Lehane MJ. A novel association between clustered NF-kappaB and C/EBP binding sites is required for immune regulation of mosquito defensin genes. Insect Mol Biol. 2006;15(4):393-401. https://doi.org/10.1111/j.1365-2583.2006.00635.x
Rothenberg EV. The chromatin landscape and transcription factors in T cell programming. Trends Immunol. 2014;35(5):195-204. https://doi. org/10.1016/j.it.2014.03.001
Behura SK, Gomez-Machorro C, Harker BW, deBruyn B, Lovin DD, Hemme RR, et al. Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis. 2011;5(11):e1385. https://doi.org/10.1371/journal.pntd.0001385
Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: Pathways, effectors, and connections. J Mol Biol. 2013;425(24):4921-36. https://doi.org/10.1016/j.jmb.2013.10.006