2018, Número 1
<< Anterior Siguiente >>
salud publica mex 2018; 60 (1)
Expresión de neuropéptidos pleiotrópicos asociados con ecdisis durante el desarrollo del mosquito Anopheles albimanus
Alvarado-Delgado A, Moran-Francia K, Perales-Ortiz G, Rodríguez MH, Lanz-Mendoza H
Idioma: Ingles.
Referencias bibliográficas: 45
Paginas: 48-55
Archivo PDF: 301.48 Kb.
RESUMEN
Objetivo. Describir la expresión de neuropéptidos durante
la ontogenia del mosquito vector de la malaria
Anopheles
albimanus.
Material y métodos. Se midió la expresión de
CCAP, corazonina, ETH, allatostatina, orcokinina, ILP2, ILP5 y
bursicon en larvas de primer (2mm), segundo (4mm), tercer
(5mm) y cuarto (6mm) estadio, pupas y mosquitos adultos,
mediante qPCR.
Resultados. A diferencia de otros insectos
en donde, CCAP, corazonina y ETH se expresan principalmente
en estadios pupales, en
An. albimanus se expresaron
mayoritariamente en larvas de cuarto estadio, CCAP tuvo
70.8% de expresión relativa, corazonina 76.5% y ETH 60.2%.
ILP2 fue el neuropéptido que más se expresó en el primer,
segundo y tercer estadio y orcokinina disminuyó durante el
desarrollo del mosquito.
Conclusión. Los péptidos estudiados
se expresaron en todos los estadios de desarrollo del
mosquito. Sin embargo, su expresión varió en cada uno de
ellos. Los neuropéptidos CCAP, corazonina y ETH, que son
esenciales para la transformación de lavas a pupas, pueden ser
blancos potenciales para el diseño de estrategias de control
dirigidas a interrumpir el desarrollo larvario de
An. albimanus.
REFERENCIAS (EN ESTE ARTÍCULO)
Organización Mundial de la Salud. Enfermedades transmitidas por vectores 2016. Ginebra: OMS 2016. Available at: http://www.who.int/ mediacentre/factsheets/fs387/es/
Tercero-Gutiérrez MJ, Olalla-Herbosa R. Enfermedades tropicales transmitidas por vectores. Medidas preventivas y profilaxis. Offarm 2011;30:78-89.
Estevez-Lao TY, Boyce DS, Honegger HW, Hillyer JF. Cardioacceleratory function of the neurohormone CCAP in the mosquito Anopheles gambiae. J Exp Biol 2013;216:601-613. https://doi.org/10.1242/jeb.077164
Wanjala CL, Mbugi JP, Ototo E, Gesuge M, Afrane YA, Atieli HE, et al. Pyrethroid and DDT Resistance and Organophosphate Susceptibility among Anopheles spp. Mosquitoes, Western Kenya. Emerg Infect Dis 2015;21:2178-2181. https://doi.org/10.3201/eid2112.150814
World Health Organization. World Malaria Report 2013. Geneva: WHO, 2013. Available at: http://www.who.int/malaria/publications/world_malaria_ report_2013/en/
Dhadialla TS, Carlson GR, Le DP. New insecticides with ecdysteroidal and juvenile hormone activity. Annual review of entomology 1998;43:545- 569. https://doi.org/10.1146/annurev.ento.43.1.545
Palma L, Munoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins (Basel) 2014;6(12):3296-3325. https://doi.org/10.3390/toxins6123296
Nassel DR, Winther AM. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neurobiol 2010;92(1):42-104. https://doi. org/10.1016/j.pneurobio.2010.04.010
O’Neal ST, Samuel GH, Adelman ZN, Myles KM. Mosquito-borne viruses and suppressors of invertebrate antiviral RNA silencing. Viruses 2014;6(11):4314-4331. https://doi.org/10.3390/v6114314
Stangier J, Hilbich C, Beyreuther K, Keller R. Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. Proc Natl Acad Sci U S A 1987;84(2):575-579. https://doi.org/10.1073/ pnas.84.2.575
Tublitz N, Brink D, Broadie KS, Loi PK, Sylwester AW. From behavior to molecules: an integrated approach to the study of neuropeptides. Trends in neurosciences 1991;14(6):254-259. https://doi.org/10.1016/0166- 2236(91)90126-F
Donini A, Agricola H, Lange AB. Crustacean cardioactive peptide is a modulator of oviduct contractions in Locusta migratoria. Journal of insect physiology 2001;47(3):277-285. https://doi.org/10.1016/S0022- 1910(00)00112-8
Kim YJ, Zitnan D, Cho KH, Schooley DA, Mizoguchi A, Adams ME. Central peptidergic ensembles associated with organization of an innate behavior. Proc Natl Acad Sci U S A. 2006;103(38):14211-14216. https://doi. org/10.1073/pnas.0603459103
Veenstra JA. Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett 1989;250(2):231-234. https://doi.org/10.1016/0014-5793(89)80727-6
Tanaka S. Endocrine mechanisms controlling body-color polymorphism in locusts. Arch Insect Biochem Physiol 2001;47(3):139-149. https://doi. org/10.1002/arch.1045
Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, et al. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci USA 2005;102(8):2820-2825. https://doi.org/10.1073/ pnas.0409916102
Kim YJ, Spalovska-Valachova I, Cho KH, Zitnanova I, Park Y, Adams ME, et al. Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci USA 2004;101(17):6704-6709. https://doi.org/10.1073/pnas.0305291101
Kruger E, Mena W, Lahr EC, Johnson EC, Ewer J. Genetic analysis of Eclosion hormone action during Drosophila larval ecdysis. Development 2015;142:4279-4287. https://doi.org/10.1242/dev.126995
Baker KD, Thummel CS. Diabetic larvae and obese flies – emerging studies of metabolism in Drosophila. Cell metabolism 2007;6(4):257-266. https://doi.org/10.1016/j.cmet.2007.09.002
Bounias M, Bahjou A, Gourdoux L, Moreau R. Molecular activation of a trehalase purified from the fat body of a coleopteran insect (Tenebrio molitor), by an endogenous insulin-like peptide. Biochem Mol Biol Int 1993;31:249-266.
Slaidina M, Delanoue R, Gronke S, Partridge L, Léopold P. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev Cell 2009;17(6):874-884. https://doi.org/10.1016/j.devcel.2009.10.009
Iwami M. Bombyxin: An Insect Brain Peptide that Belongs to the Insulin Family. Zoolog Sci 2000;17(8):1035-1044. https://doi.org/10.2108/ zsj.17.1035
Giannakou ME, Partridge L. Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 2007;32(4):180-188. https://doi.org/10.1016/j. tibs.2007.02.007
Cong X, Wang H, Liu Z, He C, An C, Zhao Z. Regulation of Sleep by Insulin-like Peptide System in Drosophila melanogaster. Sleep 2015;38(7):1075-1083. https://doi.org/10.5665/sleep.4816
Riehle MA, Brown MR. Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem Mol Biol 1999;29(10):855-860. https://doi.org/10.1016/ S0965-1748(99)00084-3
Stay B, Tobe SS, Bendena WG. Allatostatins: Identification, Primary Structures, Functions and Distribution. In: Evans PD, ed. Advances in Insect Physiology. Volume 25. Oxford UK: Oxford University, 1995:267-337. https://doi.org/10.1016/s0065-2806(08)60066-1
Bendena WG, Donly BC, Tobe SS. Allatostatins: a growing family of neuropeptides with structural and functional diversity. Ann N Y Acad Sci 1999;897:311-329. https://doi.org/10.1111/j.1749-6632.1999.tb07902.x
Yamanaka N, Roller L, Zit ˇnan D, Satake H, Mizoguchi A, Kataoka H, et al. Bombyx orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis. J Comp Neurol 2011;519(2):238-246. https://doi.org/10.1002/cne.22517
Hofer S, Homberg U. Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. J Exp Biol 2006;209:2794-2803. https://doi. org/10.1242/jeb.02307
Ons S, Bellés X, Maestro JL. Orcokinins contribute to the regulation of vitellogenin transcription in the cockroach Blattella germanica. J Insect Physiol 2015;82:129-133. https://doi.org/10.1016/j.jinsphys.2015.10.002
Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, et al. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic precis. Parasit Vectors 2010;3:72. https://doi.org/10.1186/1756-3305-3-72
Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 1993;15:532-537.
Martínez-Barnetche J, Gómez-Barreto RE, Ovilla-Muñoz M, Téllez- Sosa J, García López DE, Dinglasan RR, et al. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus. BMC Genomics 2012;13:207. https://doi.org/10.1186/1471-2164-13-207
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
Jiang H, Wei Z, Nachman RJ, Kaczmarek K, Zabrocki J, Park Y. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identification of agonists and antagonists. Peptides 2015;68:246-252. https://doi. org/10.1016/j.peptides.2014.11.004
Xie Y, Zhang L, Zhang C, Wu X, Deng X, Yang X, et al. Synthesis, biological activity, and conformational study of N-methylated allatostatin analogues inhibiting juvenile hormone biosynthesis. J Agric Food Chem 2015;63(11):2870-2876. https://doi.org/10.1021/acs.jafc.5b00882
Nachman RJ, Wang XJ, Etzkorn FA, Aziz OB, Davidovitch M, Kaczmarek K, et al. Evaluation of a PK/PBAN analog with an (E)-alkene, trans-Pro isostere identifies the Pro orientation for activity in four diverse PK/ PBAN bioassays. Peptides 2009;30(7):1254-1259. https://doi.org/10.1016/j. peptides.2009.04.017
Nachman RJ, Teal PE, Aziz OB, Davidovitch M, Zubrzak P, Altstein M. An amphiphilic, PK/PBAN analog is a selective pheromonotropic antagonist that penetrates the cuticle of a heliothine insect. Peptides 2009;30(3):616- 621. https://doi.org/10.1016/j.peptides.2008.09.024
Zhang Q, Nachman RJ, Kaczmarek K, Zabrocki J, Denlinger DL. Disruption of insect diapause using agonists and an antagonist of diapause hormone. Proc Natl Acad Sci USA 2011;108(41):16922-16926. https://doi. org/10.1073/pnas.1113863108
Smagghe G, Mahdian K, Zubrzak P, Nachman RJ. Antifeedant activity and high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae) induced by biostable insect kinin analogs. Peptides 2010;31(3):498-505. https://doi.org/10.1016/j.peptides.2009.07.001
Hillyer JF, Estévez-Lao TY, de la Parte LE. Myotropic effects of FMRFamide containing peptides on the heart of the mosquito Anopheles gambiae. Gen Comp Endocrinol 2014;202:15-25. https://doi.org/10.1016/j. ygcen.2014.03.048
Hillyer JF, Estévez-Lao TY, Funkhouser LJ, Aluoch VA. Anopheles gambiae corazonin: gene structure, expression and effect on mosquito heart physiology. Insect Mol Biol 2012;21(3):343-355. https://doi.org/10.1111/ j.1365-2583.2012.01140.x
Honegger HW, Estévez-Lao TY, Hillyer JF. Bursicon-expressing neurons undergo apoptosis after adult ecdysis in the mosquito Anopheles gambiae. J Insect Physiol 2011;57(7):1017-1022. https://doi.org/10.1016/j. jinsphys.2011.04.019
Garczynski SF, Crim JW, Brown MR. Characterization and expression of the short neuropeptide F receptor in the African malaria mosquito, Anopheles gambiae. Peptides 2007;28(1):109-118. https://doi. org/10.1016/j.peptides.2006.09.019
Kaufmann C, Brown MR. Adipokinetic hormones in the African malaria mosquito, Anopheles gambiae: identification and expression of genes for two peptides and a putative receptor. Insect Biochem Mol Biol 2006;36(6):466-481. https://doi.org/10.1016/j.ibmb.2006.03.009