2005, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2005; 8 (1)
F1F0 ATP synthase: a proteic complex with a great functional and structural versatility
Domínguez-Ramírez L, Tuena GPM
Language: Spanish
References: 36
Page: 18-27
PDF size: 216.57 Kb.
ABSTRACT
In the primitive atmosphere, pyrophosphate could have been the energy carrier molecule that gave rise to ATP. During evolution, ATP substituted pyrophosphate because it showed a higher functional versatility. At the same time, the systems that carried out its synthesis or hydrolysis, such as the H+ pyrophosphatases, ATPases and mitocondrial ATP synthases showed a higher structural complexity and also diversified functionally by using a part of their structural components in order to perform functions different from those of ATP synthesis or hydrolysis. Such findings have revolutionized the field of traditional bioenergetics and opened new pathways to the research of pathological and normal processes.
REFERENCES
Baltscheffsky, H. Energy conversion leading the origen and early evolution of life: did inorganic Pyrophosphate precede Adenosine Triphosphate. in Origen and Evolution of Biological Energy Conversion. Edited by H. Baltscheffsky. Wiley-VCH. 1996. Chapter 1. pp. 1-9
Yoshida, M., Muneyuki, E. & Isabori, T. ATP synthase. A marvelous rotatory engine of the cell. Nat. Rev. Mol. Cell. Biol. 2, 669-677 (2001).
Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type mechanism. Nature 191, 144-148 (1961).
Gay N.J. & Walker, J.E. The atp operon: nucleotide sequence f the region encoding the alpha subunit of Escherichia coli ATP synthase. Nucleic Acids Res. 9, 2187-2194 (1981).
Abrahams, J.P., Leslie, A.G., Lutter, R. & Walker, J.E. Structure at 2.8 A resolution of F1 ATPase from bovine heart mitochondria. Nature 370, 621-628 (1994).
Shirakihara, Y. et al. The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5, 567 (1995).
Stock, D., Leslie, A.G. & Walker, J.E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700-1705 (1999).
Karrasch, S. & Walker, J.E. Novel features in the structure of bovine ATP synthase. J. Mol. Biol. 290, 379-384 (1999).
Girvin, M.E., Rastogi, V.K., Abilgdgaard, F., Markley, J.L. & Fillingame, R.H. Solution structure of the transmembrane H+ transporting subunit c of the F1F0 ATP synthase. Biochemistry 37, 8817 (1998).
Boyer, P.D. Catalytic site occupancy during ATP synthase catalysis. FEBS Lett. 512, 29-32 (2002).
Noji. H. et al. Rotation of Escherichia coli F1-ATPase. Biochem. Biophys. Res. Comm. 260, 597-599 (1999).
Oster, G. & Wang, H. Why is the mechanical efficiency of F1-ATPase so high. J. Bienerg. and Biomemb. 32, 459-469 (2000).
Cabezon, E., Arechaga, I., Jonathan, P., Butler, G. & Walker, J.E. Dimerization of bovine F1 ATPase by binding the inhibitor protein, IF1. J. Biol. Chem. 37, 28353-28355.
Domínguez Ramírez, L., Mendoza Hernández, G., Carabez Trejo, A., Gómez-Puyou, A. & Tuena de Gómez-Puyou, M. Equilibrium between monomeric and dimeric mitochondrial F1 inhibitor complexes. FEBS Lett. 507, 191-194 (2001).
Domínguez-Ramírez, L. et al. Interconversion between dimers and monomers of endogenous mitochondrial F1-inhibitor protein complexes and the release of the inhibitor protein. Spectroscopic characteristics of the complexes. J. Bioenerg. Biomem. 36, 503-513 (2004).
Green, D.W. & Grover, G.J. The IF1 inhibitor protein of the mitochondrial F1F0-ATPase. Biochem. Biophys. Acta 1458, 343-355 (2000).
Muller, V. & Gruber, G. ATP synthases: structure, function and evolution of unique energy converters CML S. Cell. Mol. Life Sci. 60, 474-494 (2003).
Schultz, A. & Baltscheffsky, M. Properties of mutated Rhodospirillum rubrum H+ -pyrophosphatase expressed in Escherichia coli. Biochem. Biophys. Acta. 1607, 141-151 (2003).
Mayor, S. & Rao, M. Rafts: Scale depend,active lipid organization at the cell surface. Traffic 5, 231-240 (2004).
Avni, A., Avital, S. & Gromeet-Elhanan, Z. (1991) Reactivation of the chloroplast CF1 ATPase beta subunit by trace aumonts of CF1 alpha suggest a chaperonin like activity of CF1 alpha. J. Biol. Chem. 266, 7317-7320.
Osanai, T. et al. Mitochondrial coupling factor 6 as a potent endogenous vasoconstrictor. J. Clin. Invest. 108, 1023-1030 (2001).
Morel, N., Dunant, Y. & Israel, M. Neurotrasmitter release through the V0 sector of the V ATPase. J. Neurochem. 79, 485-488 (2001).
Bae, J.T. et al. Lipid raft proteoma reveals ATP synthase complex in cell surface. Proteomics 4, 1-13 (2004).
Martínez, O.L. et al. Ectopic beta chain of ATP synthase is a apolipoprotein A-1 receptor in hepatic HDL endocytosis. Nature 421, 76-79 (2003).
Park, M.J. et al. The F1 ATPase beta subunit is the putative enterostatin receptor. Peptides 25, 2127-2133 (2004).
Kim, B.W., Choo, H.J., Lee, J.W., Kim & Ko, Y.G. Extracellular ATP is generated by ATP sinthase in adipocyte lipid rafts. Experimental and Molecular Medicine 36, 476-485 (2004).
Huang Zy Bao, S.D. Roles of main pro- and anti-angiogenic factors in tumor angiogesis. World J Gastroenterol 10, 463-470 (2004).
Moer, L.T. . et al. Endothelial cell surface F1F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatine. PNAS 98, 6656-6661 (2001).
Chang, S.J., Park, J.S., Kim, S. & Kang, C.Y. Interaction of the c terminal domain of p43 and the alpha subunit of ATP synthase. J.Biol.Chem. 277, 8388-8394 (2002).
Araraki, N. et al. Posible role of cell surface H+ ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endotelial cells. Molecular Cancer Research 1, 931-939 (2003).
Cortés-Hernández, P. et al. The inhibitor protein of the F1F0-ATP synthase is associated to the external surface of endothelial cells. Biochem. Biophys. Res. Comm. 330, 844-849 (2005).
Burwick, N.R. et al. An inhibitor of the F1 subunit of ATP synthase (IF1) modulates the activity of angiostatin on the endothelial cell surface. J. of Biol. Chem. en prensa (2004)
Sergeant, N. et al. Association of ATP synthase alpha chain with de neurofibrillary degeneration in Alzheimer disease. Neuroscience 117, 293-303 (2003).
McGeoch, J.E.M. & Palmer, D.N. Ion pores made of mitochondrial ATP synthase c subunit in the neuronal plasma membrana and Batten disease. Molecular Genetics and Metabolism 66, 387-392 (1999).
Ballbh, D. et al. A novel ligand in lymphocyte mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. J Exp. Med. 180, 273-281 (1994).
Scotet, E. et al. Tumor recognition following Vgamma9V delta2 T cell receptor interactions with a surface F1-ATP ase related structure and Apolipoprotein A-I. Inmmunity 22, 71-80 (2005)