2018, Number 1
<< Back
Rev Mex Urol 2018; 78 (1)
Laboratory analyses for early diagnosis of chronic kidney disease
López-Heydeck SM, López-Arriaga JA, Montenegro-Morales LP, Cerecero-Aguirre P, Vázquez AGF
Language: Spanish
References: 115
Page: 73-90
PDF size: 403.66 Kb.
ABSTRACT
Early detection of chronic kidney disease enables longer kidney
function, reduces the cases of dialysis, and lowers the risk of death from cardiovascular disease. The standard diagnostic tests for kidney
damage and kidney function are the 24-h urine protein test and
glomerular filtration rate with external markers, respectively, but
they are used only when there are signs of or risk for kidney disease
and are impractical for epidemiologic studies. A more practical
test is the estimated glomerular filtration rate, with an equation for
internal markers, such as creatinine. The serum creatinine value is
influenced by creatine ingestion, creatinine production, and muscle
mass, but their effect is decreased through those equations. To reduce
interlaboratory variation in creatinine assay calibration, the
estimated glomerular filtration rate should be calculated from serum
creatinine using an equation that is traceable to isotope dilution mass
spectrometry. This has been established in many countries, but some
give all creatinine values together with only the estimated glomerular
filtration rate, and a limited number of countries apply the spot urine
protein/creatinine ratio.
REFERENCES
KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification and Stratification. 2002. KDOQI Guidelines for CKD Care. The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF KDOQI)™. Disponible en: http://www.kidney.org/professionals/ KDOQI/guidelines_commentaries.cfm. American Journal of Kidney Diseases (AJKD)
Schrier RW, Coffman TM, Falk RJ, Molitoris BA, Neilson EG, editors. Schrier's Diseases of the Kidney, 9th ed. Philadelphia: Lippincott Williams & Wilkins, 2013;1-230.
World Kidney Day 2011. Disponible en: http://www.worldkidneyday. org/page/press-material
Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. For the National Kidney Disease Education Program Laboratory Working Group. Recommendations for Improving Serum Creatinine Measurement: A Report from the Laboratory Working Group of the National Kidney Disease Education Program. Clinical Chemistry 2006; 52:15-18.
Teng HL, Yen M, Fetzer S, Sung J-M, Hung S-Y. Effects of Targeted Interventions on Lifestyle Modifications of Chronic Kidney Disease Patients: Randomized Controlled Trial. West J Nurs Res. 2013; 20(10): 1-21.
Hsu CC, Hwang SJ, Wen CP, Chang HY, Chen T, Shiu RS, Yang WC. High prevalence and low awareness of CKD in Taiwan: A study on the relationship between serum creatinine and awareness from a nationally representative survey. Am J Kidney Dis 2006;48:727-738.
Alcázar R, Egocheaga MI, Orte L, Lobos M, González-Parra E, Álvarez-Guisasola F, Górriz JL, Navarro JF, Martín de Francisco AL. Documento de consenso SEN_semFYC sobre la enfermedad renal crónica. Nefrología 2008;28(3): 273-282.
Levey AS, Eckrardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease Improving Global Outcomes (KDIGO). Kidney Int. 2005; 67:2089-2100.
Levey AS, de Jong PE, Coresh J, Nahas ME, Astor BC, et al. The definition, classification and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17-28.
Levey AS, Coresh J, Balk E, Kausz, AT, et al. National Kidney Foundation Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification. Ann Intern Med 2003;139: 137-147.
Smith HW. Comparative physiology of the kidney, in Smith HW (ed): The Kidney: Structure and Function in Health and Disease. New York: Oxford University Press, 1951;520-574.
Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985;33:278-285.
Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: New insights into old concepts. Clin Chem 1982;38:1933-1953.
Levey AS, Stevens LA, Schmid CH, Zhang Y, et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-612.
Nyman U, Grubb A, Larson A, Hansson LO, Flodin M, et al. The revised Lund-Malmo GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin Chem Lab Med. 2013;52(6):1-10.
Frequently Asked Questions (FAQ) About GFR Estimates. National Kidney Foundation (NKF) copyright 2011. Disponible en: www.kidney.org
Frequently Asked Questions (FAQ) About GFR Estimates (GFRe). National Kidney Foundation (NKF) copyright 2014. Disponible en: www.kidney.org
National Kidney Disease Education Program (NKDEP). Laboratory Professionals: Publications and Presentations. Estimating and reporting GFR. Equations and GFR calculator. Disponible en: http://www.nkdep.nih.gov/labprofessionals/ equations and GFR.htm.
Stevens LA, Padala S, Levey AS. Advances in glomerular filtration rate estimating equations. Curr Opin Nephrol Hypertens. 2010;19(3):298-307.
Fassial A. Epidemiology and causes of end stage renal Disease. Saudi J Kidney Dis Transplant. 2005;16:277-281.
Troxell ML, Lanciault C. Practical applications in immunohistochemistry, evaluation of rejection and infection in organ transplantation. Arch Pathol Lab Med. 2016;140:910-925.
Wang P, Tian Y, Xiao Y, Zhang Y, et al. A metanephric adenoma of the kidney associated with polycythemia: A case report. Oncol Lett. 2016;11(1):352-354.
Dasari S, Amin MS, Kurtin PJ, Vrana JA, et al. Clinical, biopsy, and mass spectrometry characteristics of renal apolipoprotein A-IV amyloidosis. Kidney Int. 2016;90(3):658-64.
Escalante-Gómez C, Zeledón-Sánchez F, Ulate-Montero G. Proteinuria, fisiología y fisiopatología aplicada. Revisión. AMC 2007;49(2):83-89.
Keane WF, Eknoyan G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis. 1999;33:1004-10.
Chadban SJ, Briganti EM, Kerr PG, Dunstan DW, et al. Prevalence of Kidney Damage in Australian Adults: The AusDiab Kidney Study. J Am Soc Nephrol. 2003;14:S131–S138.
Chotayaporn T, Kasitanon N, Sukitawut W, Louthrenoo W. Comparison of proteinuria determination by urine dipstick, spot urine protein creatinine index, and urine protein 24 hours in lupus patients. J Clin Rheumatol. 2011;17(3):124- 9.
Wang JM, Lin ChY, Tsai FA, Chen JY, Koa YCh. test dipstick for determination of urinary protein, creatinine and protein/ creatinine ratio. J Biomed Lab Sci. 2009;21(1):23-28.
Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third national health and nutrition examination survey. Am J Kidney Dis 2003;41(1):1-12.
Warram JH, Gearin G, Laffel L, Krolewski AS. Effect of duration of type I diabetes on the prevalence of stages of diabetic nephropathy defined by urinary albumin/creatinine ratio. J Am Soc Nephrol. 1996;7:930-7.
Jacobs DR, Murtaugh MA, Steffes M, Yu X, Roseman J, Goetz FC. Gender- and race-specific determination of albumin excretion rate using albumin-to-creatinine ratio in single, untimed urine specimens: the Coronary Artery Risk Development in Young Adults Study. Am J Epidemiol. 2002;155:1114-9.
National Kidney FoundationTM. Kidney disease. [En línea]. Dirección URL: .
Edelstein CL. Biomarkers of acute kidney injury. Adv Chronic Kidney Dis. 2008;15(3):222-234.
Swedko PJ, Clark HD, Paramsothy K, Akbari A. Serum creatinine is an inadequate screening test for renal failure in elderly patients. Arch Intern Med. 2003;163:356-60.
Narayanan S y Appleton HD. Creatinine: a review. Clin Chem 1980;26:1119-26.
Fille’e C, Vranken G, Othmane M, Philippe M, et al. Results of the recalibration of creatinine measurement with the modular Beckman Coulter Jaffe creatinine method. Clin Chem Lab Med. 2011;49(12):1987-1999.
Murthy K, Stevens LA, Stark PC, Levey AS. Variation in serum creatinine assay calibration: a practical application to glomerular filtration rate estimation. Kidney Int. 2005;68:1884-7.
Stevens LA, Levey AS. Clinical implications for estimating equations for glomerular filtration rate [Editorial]. Ann Intern Med. 2004;141:959-61.
Directive 98/79/EC of the European Parliament and of the Council of 27 October 1998 on in vitro diagnostic medical devices (DEPC 1998). Off J Eur Communities L. 1998;L331:1-37.
Panteghini M, Myers GL, Miller WG, Greenberg N. La importancia de la trazabilidad metrológica en la validez de la medición de creatinina como índice de función renal. Federación Internacional de Química Clínica y Laboratorio Clínico (IFCC), División Científica de la IFCC, Grupo de Trabajo sobre Estandarización de la Evaluación de la Tasa de Filtración Glomerular (WG-GFRA). Acta Bioquím Clín Latinoam. 2009;43(2):271-7.
Levey AS, Coresh J, Greene T, Marsh J, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI). Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007; 53(4):766-772.
Flegar-Mestric Z, Perkov S, Simonovic B and Juretic D. Applicability of common reference intervals for serum creatinine concentrations to the Croatian population. Clin Chem Lab Med. 2010; 48(2): 231–235.
Miller W, Myers G, Ashwood E, Killeen A, et al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med. 2005;129:297-304.
Miller G, Eckfeldt JA. Creatinine accuracy calibration verification participant summary. Coll Amer Pathol 2005:1-2.
Fischer MJ, Go A, Lora CM, Ackerson L, et al. CKD in hispanics: baseline characteristics from the cric (chronic renal insufficiency cohort) and hispanic-cric studies. Am J Kidney Dis. 2011;58(2):214-227.
Inker LA, Schmid CA, Tighiouart H, Eckfeld JH, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012;367(1):20-29.
Gowda S, Desai PB, Kulkarni SS, Hull VV, et al. Markers of renal function tests. N Am J Med Sci. 2010; 2(4): 170-173.28.
Grubb A. Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: Simultaneous use of cystatin C- and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand J Clin Lab Invest. 2010; 70:65–70.
Manetti L, Pardini E, Genovesi M, Campomori A, et al. Thyroid function differently affects serum cystatin C and creatinine concentrations. J Endocrinol Invest. 2005;28:346-349.
Risch L, Herklotz R, Blumberg A, Huber AR. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem. 2001;47:2055-2059.
Risch L y Huber AR. Glucocorticoids and increased serum cystatin C concentrations. Clin Chim Acta. 2002;320:133- 134.
Knight EL, Verhave JC, Spiegelman D, Hiellege HL, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65:1416-1421.
Köttgen A, Selvin E, Stevens LA, Levey AS, Van Lente F, CoreshJ. Serum cystatin C in the United States: The Third NationalHealth and Nutrition Examination Survey (NHANES III). Am JKidney Dis. 2008;51:385-94.
Fernández-García M, Coll E, Ventura-Pedret S, Bermudo- Guitarte C, et al. Cistatina C en la evaluación de la función renal. Rev Lab Clin. 2011;4(1):50-62.
Priem F, Althaus H, Jung K, Sinha P. b-Trace protein is not better than cystatin C as an indicator of reduced glomerular filtration rate. Clin Chem. 2001;47:2181.
Hayden MR y Tyagi SC. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr Metab. 2004;1:1-10.
Nakagawa T, Kang DH, Feig D, Sánchez-Lozada LG, et al. Unearthing uric acid: An ancient factor with recently found significance in renal and cardiovascular diseases. Kidney Int 2006;69:1722-1725.
Ryoo JH, Choi JM, Oh ChM, Kim MG. The association between uric acid and chronic kidney disease in korean men: A 4-year follow-up study. Korean Med Sci 2013;28:855-860.
Khosla U, Zharikov S, Finch J, Nakagawa T, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int 2005;67:1739-1742.
Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol 2006;17:1466-71.
Sanchez-Lozada LG, Tapia E, Santamaria J, Ávila-Casado C, et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 2005;67:237-47.
James S, Mitchel G. Physiology and disorder of water electrolytes and acid base metabolism. In: Carl AB, Edward R, David E, editors.Tietz Textbook of clinical chemistry and molecular diagnostics. 4th Ed. New Delhi: Elsevier Inc, 2006;1747-1776.
Drechsler C, Kollerits B, Meinitzer A, März W, et al. The MMKD Study Group. Homoarginine and Progression of Chronic Kidney Disease: Results from the Mild to Moderate Kidney Disease Study. PLoS One 2013;8(5):e63560.
Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 2010;78:975-980.
Isakova T, Wahl P, Vargas GS, Gutierrez OM, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370-1378.
Evenpoel P, Myles W. A balanced view of calcium and phosphate homeostasis in chronic kidney disease. Kidney Int. 2013;83(5):789-791.
Negri AL. The klotho gene: a gene predominantly expressed in the kidney is a fundamental regulator of aging and calcium/phosphorus metabolism. J Nephrol. 2005;18(6):654-8.
Parikh CR, Mishra J, Thiessen-Philbrook H, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199-203.
Faggioni R, Jones-Carson J, Reed DA, et al. Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: Role of tumor necrosis factor alpha and IL-18. Proc Natl Acad Sci USA. 2000;97:2367-2372.
Faggioni R, Cattley RC, Guo J, et al. IL-18-binding protein protects against lipopolysaccharide induced lethality and prevents the development of Fas/Fas ligand-mediated models of liver disease in mice. J Immunol. 2001;167:5913- 5920.
Fiorucci S, Santucci L, Antonelli E, et al. NO-aspirin protects from T cell-mediated liver injury by inhibiting caspasedependent processing of Th1-like cytokines. Gastroenterology. 2000;118:404-421.
Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2007;18:407-413.
Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol. 2006;26(3):287-292.
Zappitelli M, Washburn KK, Arikan AA, Lofitis L, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: A prospective cohort study. Crit Care. 2007;11:R84.
Bolignano D, Coppolino G, Campo S, et al. Neutrophil gelatinase-associated lipocalin in patients with autosomal- dominant polycystic kidney disease. Am J Nephrol. 2007;27:373-378.
Trachtman H, Christen E, Cnaan A, et al. Investigators of the HUS-SYNSORB Pk Multicenter Clinical Trial: Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: A novel marker of renal injury. Pediatr Nephrol. 2006;21:989-994.
Suzuki M, Wiers KM, Klein-Gitelman MS, et al. Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in lupus nephritis. Pediatr Nephrol. 2008;23:403- 412.
Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV, et al. Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237-244.
Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135-4142.
Perazzi B y Angerosa M. Creatinina en sangre: calidad analítica e influencia en la estimación del índice de filtrado glomerular. Acta Bioquím Clin Latinoam. 2011;45(2): 265-72.
Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999;130:461-70.
Farías R. Tasa de filtración glomerular mediante depuración de creatinina y fórmula MDRD en la enfermedad renal crónica. Salus 2012;16(1):5-12.
Coresh J, Selvin E, Stevens LA, Manzi J, et al. Prevalence of chronic kidney disease in the United States. JAMA 2007;298(17):2038-2047.
Levey AS, Coresh J, Greene T, Stevens LA, et al. Using standardized serum creatinine values in the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247-254.
Sterner G, Frennby B, Hultberg B, Almen T. Iohexol clearance for GFR -determination in renal failure- single or multiple plasma sampling?. Nephrol Dial Transplant 1996;11:521-525.
Schwartz GJ, Schneider MJ, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady B, Furth SL, Muñoz A. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445-453.
DuBois D y DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916; 17:863–871.
Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978; 93:62–66. [PubMed: 650346]
Krutzen E, Back SE, Nilsson-Ehle I, Nilsson-Ehle P. Plasma clearance of a new contrast agent, iohexol: a method for the assessment of glomerular filtration rate. J Lab Clin Med. 1984; 104: 955-961.
O'Reilly PH, Brooman PJC, Martin PJ, Pollard A, Farah NB, Mason GC. Accuracy and reproducibility of a new contrast clearance method for the determination of glomerular filtration rate. Br Med J. 1986; 293: 234-236.
Lewis R, Kerr N, Van Buren C, Lowry P, Sandier C. Comparative evaluation of urographic contrast media, inulin and 99mTc-DTPA clearance methods for determination of GFR. Transplantation 1989; 48: 790-796.
Effersoe T, Rosenkilde P, Groth S, Jensen LI, Golman K. Measurement of renal function with iohexol: a comparison of iohexol, 99mTc-DTPA, and 51Cr-EDTA clearance. Invest Radiol. 1990; 25: 778-782.
Brown SCW y O'Reilly PH. Iohexol clearance for the determination of glomerular filtration rate in clinical practice: Evidence for a new gold standard. J Urol. 1991; 146: 675-679.
Stake G, Monn E, Rootwelt K, Gronberg T, Monclair T. Glomerular filtration rate estimated by X-ray fluorescence technique in children; comparison between the plasma clearance of 99mTc-DTPA and iohexol after intravenous urography. Scand J Clin Lab Invest. 1990; 50: 161-167.
Shafi T, Matsushita K, Selvin E, Sang Y, Astor BC, Inker LA y Coresh J. Comparing the association of GFR estimated by the CKD-EPI and MDRD study equations and mortality: the third national health and nutrition examination survey (NHANES III). BMC Nephrol. 2012; 13: 42. doi: 10.1186/1471-2369-13-42
Levey AS, Greene T, Kusek JW, Beck GJ, Group MS. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 2000; 11: 155A (A0828).
Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TJ, Jee S-J, Polkinghorne KR, Shankar A, Smith DH, Tonelli M, Warnock DG, Wen Ch-P, Coresh J, Gansevoort RT, Hemmelgarn BR, Levey AS. Comparison of Risk Prediction Using the CKD-EPI Equation and the MDRD Study Equation for Estimated Glomerular Filtration Rate. JAMA 2012; 307(18): 1941-1951.
Arreola-Guerra JM, Rincón-Pedrero R, Cruz-Rivera C, Belmont-Pérez T, Correa-Rotter R, Niño-Cruz JA. Performance of MDRD-IDMS and CKD-EPI equations in Mexican individuals with normal renal function. Nefrologia 2014; 34(5):591-8. doi:10.3265/Nefrologia. pre2014.Jun.12538
Sandoval-Arriaga A. Estructura corporal y diferenciación social: un estudio en adultos jóvenes de la ciudad de México. Universidad Nacional Autónoma de México; Instituto de Investigaciones Antropológicas 1985; 241 p.
Grubb A. Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: Simultaneous use of cystatin C- and creatinine-based GFR-prediction equations, clinical data and an internal quality check. Scand J Clin Lab Invest, 2010; 70:65–70. [PubMed: 20170415]
Cockcroft DW y Gault MH: Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31-41.
Jones GRD y Lim E. The National Kidney Foundation guideline on estimation of the glomerular filtration rate. Clin Biochem Rev. 2003; 24:95-98.
Teruel JL, Sabater J, Galeano C, Rivera M, Merino JL, Fernández-Lucas M, Marcén R y Ortuño J. La ecuación de Cockroft-Gault es preferible a la ecuación MDRD para medir el filtrado glomerular en la insuficiencia renal crónica avanzada. Nefrología 2007; 27(3): 313-319.
Rostoker G, Andrivet P, Pham I, Griuncelli M, Adnot S. A modified Cockcroft-Gault formula taking into account the body surface area gives a more accurate estimation, of the glomerular filtration rate. J Nephrol. 2007; 20:576–585.
Rostoker G, Andrivet P, Pham I, Griuncelli M y Adnot S. Accuracy and limitations of equations for predicting the glomerular filtration rate during follow-up of patients with non-diabetic nephropathies. BMC Nephrol. 2009; 10: 16.
Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976; 58: 259–263.
Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM: Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Intern Med. 1976 51: 875–878.
Amato D, Álvarez-Aguilar C, Castañeda-Limones R, Rodríguez E, Ávila-Díaz M, Arreola F, Gómez A, Ballesteros Hiriam, Becerril R, Paniagua R. Prevalence of chronic Kidney disease in an urban Mexican Population. Kidney Internarnational 2005; 68 (97):S11-S17.
Méndez-Durán A, Méndez-Bueno JF, Tapia-Yáñez T, Muñoz Montes A, Aguilar-Sánchez L. Epidemiología de la insuficiencia renal crónica en México. Dial Traspl. 2010; 31(1): 7-11.
Instituto Nacional de Estadísticas y Geografía (INEGI), México. Mujeres y hombres en México 2011. Disponible en: http://www.inegi.org.mx/prod_serv/contenidos/espanol/ bvinegi/productos/integracion/sociodemografico/ mujeresyhombres/2011/myh2011.pdf
García-García G, Monteon-Ramos JF, García-Bejarano H, Gómez-Navarro B, Hernández-Reyes I, Lomelí AM, Palomeque M, Cortés-Sanabria L, Breien-Alcaraz H, Ruiz- Morales N. Renal replacement therapy among disventaged populations in Mexico: A report from the Jalisco Dialysis and Transplant Registry (REDTJAL). Kidney International 2005; 68: S58-S61; doi: 10.1111/j.1523-1755.2005.09710.x
United States Renal Data System: Excerpts from the USRDS 2009 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. International Comparisons. Am J Kidney Dis. 2010; 55(1 Suppl 1): A6-A7S173–S180.
Guía de Práctica Clínica, Prevención, Diagnóstico y Tratamiento de la Enfermedad Renal Crónica Temprana (GPCPDTERCT); México, Secretaría de Salud, 2009.
Medina-Escobedo M, Sansores-España D, Villanueva-Jorge S. Función renal en un grupo marginado de la población. Rev Med Inst Mex Seguro Soc. 2014; 52(2):156-61.
Soto-Domínguez FE, Pozos-Pérez ME, Barrientos-Guerrero CE, Torres-Fermán IA, Beltrán-Guzmán FJ. Detección oportuna de insuficiencia renal oculta en pacientes adultos en atención primaria a la salud. Rev Med UV, 2009; 15(3). Disponible en: http://www.medigraphic.com/pdfs/veracruzana/ muv-2009/muv092d.pdf