2017, Number 4
<< Back Next >>
Arch Neurocien 2017; 22 (4)
Mitochondrial response in the rat focal cerebral ischemia
Villafuerte-Morquecho LE, Orozco-Ibarra M, Corzo-Toledo JD, Cázares-Raga FE, Hernández-Hernández FC, Ortiz-Plata A
Language: Spanish
References: 18
Page: 26-32
PDF size: 982.48 Kb.
ABSTRACT
Antecedents: focal cerebral ischemia (FCI) causes mitochondrial injure. Due to
its participation in ATP production and in cell death processes, it is important to
characterize the damage.
Objetive: To show the tissue injures and mitochondrial proteomic profile changes in
striatum and hippocampus in FCI.
Material and methods: Fifteen min and 1h of FCI with and without 24h of
sanguineous reperfusion (rpf) was induced in Male Wistar rats. Neurological
evaluation, histological assessment and mitochondrial proteomic analysis was done.
Results: Neurological deficit was observed from the 15 min of FCI. Tissue damage was
observed with H&E stain; TTC stain show macroscopic cellular death at 1h-FCI/24h
rpf. By proteomic strategy, 20 protein spots were initially found to be differentially
expressed; 6 spots in striatum and 4 spots in hippocampus show qualitative differences,
of these spots, two protein spots show evident changes from 15 min of FCI, in both
cerebral regions.
Conclusion: focal cerebral ischemia induces mitochondrial protein expression
changes from the first minutes of the ischemic insult, as were observed by proteomic
strategy. The subsequent identification and characterization of these proteins will
allow studying the biochemical processes that take place in FCI, and will contribute to
broaden the knowledge of the sequence of events that occur in response to ischemia.
REFERENCES
1.Diez-Tejedor E, Del Brutto O, Álvarez-Sabín J, Muñoz M, Abiusi G. Clasificacción de las enfermedades cerebrovasculares. Sociedad Iberamericana de Enfermedades Cerebrovasculares. Rev Neurol 2001; 33(5):455- 464.
2.Durukan A, Tatlisumak T. Acute ischemic stroke: overview of a mayor experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol, Biochem and Behavior 2007; 87(1):179 197.
3.Cheatwood JL, Emerick AJ, Kartje GL. Neuronal plasticity and functional recovery after ischemic stroke. Top Stroke Rehabil 2008; 15(1):42- 50.
4.Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischemic stroke: an integrated view. Trends Neurosci 1999; 22(9):391-7.
5.Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, Chaturvedi S, et al. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 2011; 42(2): 517-84.
6.Cantú-Brito C, Mimenza-Alvaeado A, Sánchez-Hernández JS. Diabetes mellitus and aging as a risk factor for cerebral vascular disease: Epidemiology, pathophysiology and prevention. Rev Invest Clin 2010;62(4):333-42.
7.Deitelzweig SB, Ogbonnaya A, Berenson K, Lamerato LE, Costas JP, Makenbaeva D, Corbelli J. Prevalence of stroke/transient ischemic attack among patients with acute coronary syndromes in a real-world setting. Hosp Pract (Minneap) 2010; 38(4):7-17.
8.Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 2010; 1802(1):92-9.
9.Hu Y, Deng H, Xu S, Zhang J. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion Injury. Int J Mol Sci 2015; 16(10):24895-917.
10.Longa ZE, Weinstein PR, Carlson S and Cummins R. Reversible middle cerebral artery occlusion without craniectomy in Rats. Stroke 1999; 20(1):84-911.
11.Capdeville Ch, Pruneau D, Allix, Plotkine M. Boulu R. G. Naloxone effect on the neurological deficit induced by forebrain ischemia in rats. Life Sci 1986; 38:437-442.
12.Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 1986;17(6):1304-8.
13.Luis-García ER, Limón-Pacheco JH, Serrano-García N, Hernández-Pérez AD, Pedraza-Chaverri J, Orozco- Ibarra M. Sulforaphane prevents quinolinic acid-induced mitochondrial dysfunction in rat striatum. J Biochem Mol Toxicol 2017; 31(2). doi: 10.1002/jbt.21837.
14.Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R and Weiss W. The current state of twodimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000; 21(6):1037-53.
15.Broussalis E, Killer M, McCoy M, Harrer A, Trinka E, Kraus J. Current therapies in ischemic stroke. Part A. Recent developments in acute stroke treatment and in stroke prevention. Drug Discov Today 2012; 17(7-8):296-309.
16.Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron 2010; 29:67(2):181-98.
17.Gauss C, Kalkum1 M, Löwe M, Lehrach H, Klose J. Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic. Electrophoresis 1999; 20(3):575-600.
18.Lu FH, Tian Z, Zhang WH, Zhao YJ, Li HL, Ren H, Zheng HS, Liu C, Hu GX, Tian Y, Yang BF, Wang R, Xu CQ. Calcium-sensing receptors regulate cardiomyocyte Ca2 signaling via the sarcoplasmic reticulum-mitochondrion interface during hypoxia/reoxygenation. J Biomed Sci 2010; 17(1):1-11.