2017, Number 1
<< Back Next >>
Rev Cubana Plant Med 2017; 22 (1)
Antibacterial and larvicidal activity against Aedes aegypti L. of extracts from Ambrosia peruviana Willd (altamisa)
Mesa VAM, Naranjo JP, Diez AF, Ocampo O, Monsalve ZL
Language: Spanish
References: 32
Page: 1-11
PDF size: 133.86 Kb.
ABSTRACT
Introduction: New technological trends and initiatives are currently being put
forth concerning the development of insecticidal products and antimicrobial agents
of natural origin, since their bioactive components are selective and biodegradable,
and cause fewer adverse effects. The species Ambrosia peruviana Willd. was of
great interest to the present study, due to its great biological and ethnobotanical
potential.
Objective: Evaluate the larvicidal activity of A. peruviana extracts against Aedes
aegypti L., and its antibacterial activity against gram-positive and gram-negative
bacteria.
Methods: Dry plant material (leaves) was processed to obtain five extracts of
different polarity in hexane (H), dichloromethane (D), ethyl acetate (A), ethanol (E)
and essential oils (AE), which were evaluated for larval growth inhibition with the
method recommended by WHO, and for bacterial inhibition with the Kirby-Bauer
agar diffusion method.
Results: The mortality rate at 24 h and a concentration of 200 ppm was 10 % for
all extracts. Examination of the transition of larvae into adults at 144 h and the
same concentration revealed a mortality of 100 % with all extracts. On the other
hand, the extracts of A. peruviana displayed inhibition capacity against Bacillus
cereus Frankland & Frankland and Bacillus subtilis (Ehrenberg) Cohn with inhibition
haloes for the dichloromethane extract (APExtD) of 10.5 and 15.0 mm in diameter,
respectively, whereas no antibacterial activity was found against the strains
Serratia marcescens Bizio, Proteus mirabilis Hauser, Enterobacter cloacae (Jordan)
Hormaeche & Edwards and Staphylococcus aureus.
Conclusions: This study is the first report of larvicidal activity againstA. aegypti
and antibacterial activity against B. cereus and B. subtilis by several extracts of A.
peruviana with promising results in these models.
REFERENCES
WHO (World Health Organization). Enfermedades transmitidas por vectores. Nota descriptiva Nº387. 2016. [citado 10 may 2016]. Disponible en: http://www.who.int/mediacentre/factsheets/fs387/es/
Seccacini E, Juan L, Zebra E. Aedes aegypti (Diptera, Culicidae): Evaluation of natural long-lasting materials containing pyriproxyfen to improve control strategies. Parasitol Res. 2014;113:3355-60.
Berg HVD, Mutero CM, IchimorI K. GUIDANCE on policy-making for integrated vector manageme. WHO, Francia: Library Cataloguing-in-Publication. 2012.
Wahyuni D. New Bioinsecticide granules toxin from exctract of papaya (Carica papaya) seed and leaf modified against Aedes aegypti larvae. Procedia Environmental Sciences. 2015;23:323-8.
WHO (World Health Organization). Resistencia a los antibioticos. Nota descriptiva. [octubre 2015]. Disponible en: http://www.who.int/mediacentre/factsheets/antibiotic-resistance/es/ Acceso: 10 de mayo 2016. WHO (World Health Organization). Worldwide country situation analysis: response to antimicrobial resistance. WHO; Library Cataloguing-in- Publication Data: 2015.
Chaves TP, Clementino ELC, Felismino DC, Alves RRN, Vasconcellos A, Coutinho HDM, et al. Antibiotic resistance modulation by natural products obtained from Nasutitermes corniger (Motschulsky, 1855) and its nest. Saudi J Biol SCI. 2015;22:404-8.
Gupta MP. 270 Plantas Medicinales Iberoamericanas. Convenio Andrés Bello CYTED, Santa Fe de Bogotá: Editorial presencia ltda; 1995.
Fonnegra R. Medicina tradicional en los corregimientos de Medellín-historias de vidas y plantas. Medellín: Editorial Universidad de Antioquia. 2012.
Goldsby G, Basil AB. Sesquiterpene lactones and a sesquiterpene diol from jamaican Ambrosia peruviana. Phytochemistry. 1987;26(4):1059-63.
Nathan JP, Romo J. Isolation and structure of peruvin. Tetrahedron. 1966;22(6):1723-28.
Romo J, Nathan JP, Romo de Vivar A, Alvarez C. The structure of peruvinin-A pseudoguaianolide isolated from Ambrosia peruviana Willd, Tetrahedron. 1967;23(2):529-34.
Herz W, Anderson G, Gibaja S, Raulais D. Sesquiterpenelactones of some Ambrosia species. Phytochemistry. 1969;8(5):877-81.
Yánez CA, Ríos N, Mora F, Rojas L, Díaz T, Velasco J, et al. Composición química y actividad antibacteriana del aceite esencial de Ambrosia peruviana Willd. de los llanos venezolanos. Rev Peru Boil. 2011;18(2):149-215.
De leo M, Vera Saltos MB, Naranjo Puente BF, De tommasi N, Bracaa A. Sesquiterpenes and diterpenes from Ambrosia arborescens. Phytochemistry. 2010;71:804-9.
Kagan HB, Miller HE, Renold W, Lakshmikantham MV, Tether MV, Herz LR, et al. The structure of psilostachyin c, a new sesquiterpene dilactone from Ambrosia psilostachya DC. J. Organization of Chem. 1966;31(5):1629-32.
Zoran M. In vitro antioxidant activity of ragweed (Ambrosia artemisiifolia L. Asteraceae) herb. Industrial Crops and Products. 2008;28(3):356-60.
Buznego MT, Llanio Villate M, Fernandez MD, Alonso N, Acevedo ME, Pérez Saad H. Perfil neurofarmacologico de la Ambrosia paniculata (Willd.) O.E Schulz (Artemisa). Rev Cubana Plant Med. 1998;3(1):42-5.
Buznego MT, Pérez-Saad H. Acute effect of an extract of Ambrosia paniculata (Willd.) O. E. Schultz (mugwort) in several models of experimental epilepsy. Epilepsy Behav. 2004;5:847-51.
Chalchat JC, Maksimovic Z, Petrovic S, Gorunovic MS. Chemical composition and antimicrobial activity of Ambrosia artemisiifolia L. essential oil. J. Essential Oil Res. 2004;16:270-3.
Wang P, Hua Kong C, Xian Zhang C. Chemical composition and antimicrobial activity of the essential oil from Ambrosia trifida L. Molecules. 2006;11:549-55.
Aponte JC, Yang H, Vaisberg AJ, Castillo D, Málaga E, Verástegui M, et al. Cytotoxic and anti-infective sesquiterpenes present in Plagiochiladisticha (Plagiochilaceae) and Ambrosia peruviana (Asteraceae). Planta medica. 2010;76(7):705-7.
Abdel-malek S, Bastien JW, Mahler WF, Qi Jia, Reinecke MG, Edward Robinson W, et al. Drug leads from the Kallawaya herbalists of Bolivia. Background, rationale, protocol and anti-HIV activity. J. Ethnopharmacol. 1996;50:157-66.
Melendez PA, Capriles VA. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine. 2006;13:272-6.
Guauque MP, Castaño JC, Gomez M. Detección de metabolitos secundarios en Ambrosia peruviana Willd. y determinación de la actividad antibacteriana y antihelmíntica. Infectio. 2010;14(3):186-94.
Graham JG, Pendland SL, Prause JL, Danzinger LH, Schunke Vigo J, Cabieses F, et al. Antimycobacterial evaluation of peruvian plants. Phytomedicine. 2003;10:529-35.
Mesa AM, Zapata S, Arana LM, Zapata I, Monsalve Z, Rojano B. Antioxidant activity of different polarity extracts from Ageratum conyzoides L. BLACPMA. 2015;14(1):1-10.
Rojas JJ, García AM, López A. Evaluación de dos metodologías para determinar la actividad antimicrobiana de plantas medicinales. BLACPMA. 2005;4(2):28-32.
WHO (World Health Organization). Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization; 2005. Disponible en: http://whqlibdoc.who.int/hq/2005/who_cds_whopes_gcdpp_2005.11.pdfel 28/5/13 .
Solujić S, Sukdolak S, Vukovic N, Niciforovic N, Stanic S. Chemical composition and biological activity of the acetone extract of Ambrosia artemisiifolia L. pollen. J. Serb. Chem. Soc. 2008;73(11):1039-49.
Bartram J, Contruvo J, Exner M, Fricker C, Glasmacher A. Heterotrophic plate counts and drinking-water safety. World Health Organization. Londres (Reino Unido): IWA Publishing; 2003.
Bussmann RW, Glenn A, Sharon D, Chait G, Díaz D, Pourmand K, et al. Proving that traditional knowledge works: the antibacterial activity of northern peruvian medicinal plants. Ethnobotany Research & Applications. 2011;9:67-96.
Kweka EJ, Cardoso Lima T, Marciale CM, Pergentino de Sousa D. Larvicidal efficacy of monoterpenes against the larvae of Anopheles gambiae. Asian Pac J Trop Biomed. 2016;6(4):290-4.