2017, Number 2
<< Back Next >>
Rev Educ Bioquimica 2017; 36 (2)
Las nanopartículas de plata: mecanismos de entrada, toxicidad y estrés oxidativo
Coutiño EMR, Ávila LL, Arroyo HO
Language: Spanish
References: 85
Page: 39-54
PDF size: 543.02 Kb.
ABSTRACT
In the last few decades, the study and application of colloids and nanoparticles (NPs)
has spread notably in industry and particularly in medicine, developing the era of
nanotechnology, with great relevance for its bioavailability and microbial effects.
However, the inherent properties of NPs, especially those made from metals such as
silver (AgNPs), have implications for the health of populations, which is evidenced
when analyzing them from the perspective of their characteristics, among them, the
Size, pathways of exposure, mechanisms of entry and, mainly, their effects on electron
transport due to its affinity with ubiquinone, as well as the induction of oxidative
stress, and its toxic effects (necrotic and apoptotic) and immunotoxic. Particularly,
analyzing on the one hand the role of the main target of AgNPs, ubiquinone, in inducing
oxidative stress markers such as hemo-oxygenase 1 and 8 isoprostanes, molecules
involved with almost all chronic-degenerative diseases, And on the other the role of
reducing ions on disulfide bonds and the destabilization of proteins.
REFERENCES
Avalos A, Haza, AI,Mteo, D, y Morales, P (2013) Nanopartículas de plata. Aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense de Ciencias Veterinarias;7(2):1-23.
Ivo Iavicoli EJCyMAN (2010) Exposure to nanoparticles and hormesis. Dose-response:An International Journal;8(4):501-17.
Magdalena - Stevanovie BK, Jana Pethovie, Metka Filipie and Dragan Oskokovie (2011) Effect of poly α , γ L-glutamic acid as a capping agent on morphology and oxidative stressdepend toxicity of silver nanoparticles. Int J Nanomedicine;6:2837.
Elda Maria del Rocio Coutiño Rodríguez (2011) Defensa Química y CYP450: relación con la defensa Inmune Revista de Investigación Médica de la Uv. [ Original y revisión].11(2):53-63.
Elda Maria del Rocio Coutiño Rodríguez RAPG, Rebeca García Román, Luis Alfredo Herbert Doctor (2010) Plata coloidal y salud Universalud;6 (12):56.
Savolainen K, Alenius,H.H,Norppa,H.,Pylk känen,L., Toumi T., Kasper,G. (2010) Risk assessment of engineered nanomaterial and nanotechnologies-A review Toxicology. Potential hazard of nanoparticles Properties: From to Biological & Environmental Effects;269:94-104.
Chernousova S, Epple, M. (2013) Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew Chem Int Ed;52: 1636-53.
Coutiño R, Elda maria del Rocio (2015) Plata coloidal: Xenobiótico, Antígeno y disruptor hormonal REB 34(1):10-25.
Jazmín Elizabeth García Vicencio ERRCOL, y R. Coutiño Rodríguez (2004) Efecto Bactericida de los derivados de plata coloidal, cal y cloro, en lechuga romana sin y con lavado. Higiene;VI(150-151).
Sondi I S-SB (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. . J Colloid Interface Sci;271(1):177-82.
Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology;3:6.
Thurman RB GC, Bitton G (1989) The molecular mechanism of cooper and silver ion desinfection of bacteria and viruses. Crit Rev Environ Control;18:295-315.
Slawson RM LH, Trevors JT. (1990) Bacterial interactions with silver. Biometals;3(3):151-4.
Liau S. RD PW, Furr J., Russell A (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of siler ions. Letters en applied microbiology;25:279-83.
Coutiño- Rodríguez Elda Maria del Rocio AP, Rocio Anaís Pérez Gutíerrez (2007) Plata y sus compuestos. Altepepaktli. [Difusión].3 (5):29-39.
Marin-Llera J, O, Arroyo-Huelguera y Coutiño- Rodríguez EMR (2012) Efecto de la Plata Coloidal en la lipoperoxidación de linfocitos humanos. Universalud ( antes Altepel kli);8(16):26-31.
Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns;26(2):131-8.
Silver S PL, Silver G. (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechonol;33(7):627-34.
Bhattacharya R MO (2008) Biological properties of naked metal nanoparticles. Adv Drug Deliv Rev;60(11):1289-306.
Kim SC, J. E.Choi, J.Chung, K. H.Park, K.Yi, J.Ryu, D. Y. (2009) Oxidative stressdependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro Sep;23(6):1076-84.
Braydich-Stolle L HS, Schlager JJ, Hofmann MC. (2005) In vitro citotoxicity of nanoparticles in mammalian germline stem cells. Toxicology Science;88(412-419).
Asharani PV, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol;10:65.
AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano Feb 24;3(2):279-90.
Alkilany AMM, C.J. (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res;12(7): 2313.
Van der Zande MV, R. J.Van Doren, E.Kramer, E.Herrera Rivera, Z.Serrano-Rojero, C. S.Gremmer, E. R.Mast, J.Peters, R. J.Hollman, P. C.Hendriksen, P. J.Marvin, H. J.Peijnenburg, A. A.Bouwmeester, H. (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano Aug 28;6(8):7427-42.
Zhang S, Bian Z, Gu C, Zhang Y, He S, Gu N, et al. (2007) Preparation of anti-human cardiac troponin I immunomagnetic nanoparticles and biological activity assays. Colloids Surf B Biointerfaces Apr 1;55(2):143-8.
Z. Yang ZWL, R.P.Allaker, P.Reip, J, Oxford, Z. Ahmad and G Ren (2010) A review of nanoparticle functionality and toxicity on the central nervous system. JRSoc Interface;7:S411-S22.
Johnston H, Hutchison,G, Christensen, FM, Peters,S, Hankin, S and Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates:Particle attributes and biological mechanism responsible for the observed toxicity. Crit Rev Toxicol;40:328-46.
Kyung-Taek Rim S-WS, Hyeon-Yeong Kim (2013) Oxidative DNA Damage from Nanoparticle Exposure and Its Application to Workers’ Health: A Literature Review. Safety and Health at Work;4:177-86.
Sung J, Ji,JH, Park,JD, Yoon, JU, Kim,DS, Jeon,KS, Song,MY, Jeong,J, Jan BS, Han JH, Chun,YH, Chang, HK, Lee,JH, Cho,MH, Kelman,BJ, y Yu,IJ (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452.61.
Takenaka S, Karg, E, Roth,c, Schulz H, Ziesenis,A, Heinzmann, U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine, silver particles in rats. Environment Health Perspectives;4:547-51.
Van Hasselt P GB, Ahmad J. (2004) Colloidal silver as an antimicrobial agent: fact or fiction?. J Wound Care;13(4):154-5.
Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett Mar 15;155(3):377-84.
Trop M (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyrialike symptoms in burn patient. J Trauma Oct;61(4):1024.
Braydich-Stolle LK LB, Schrand A, et al (2010) Silver nanoparticles disrupt GDN/Fyn kinase signaling in spermatogonial stem cells. . Toxicol Sci;116(577-589).
Rosas-Hernandez HJ-B, S.Martinez-Cuevas, P. P.Gracia-Espino, E.Terrones, H.Terrones, M.Hussain, S. M.Ali, S. F.Gonzalez, C. (2009) Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett Dec 15;191(2- 3):305-13.
Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B Oct 30;112(43):13608-19.
Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, et al. (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol Dec 15;233(3):404-10.
Cho W, S., Cho,M., Jeong, J.,Choi,M, Cho,H:Y., Han,B.S., Kim,S.H, Kim, H.O. Lim,Y.T., Chung,B.H., Jeong J (2009) Acute toxicity and pharmacokinetics of 13nm-seized PEG. coated gold nanoparticles. Toxicol Appl Pharmacol;236:16-24
Pal S TY, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712-20.
Gálvez VyTC (2010) Toxicología de las nanopartículas. Seguridad y salud en el trabajo;56:6-12.
Jiang X, Foldbjerg R, Miclaus T, Wang L, Singh R, Hayashi Y, et al. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett Sep 12;222(1):55-63.
Klien KaG-CJ (2012) “Genotoxicity of metal nanoparticles: focus on in vivo studies”. Archiv Za Higijenu Rada I Tokxikologiju;63(3).
Milic ML, G.Pavicic, I.Zebic Avdicevic, M.Dobrovic, S.Goessler, W.Vinkovic Vrcek, I. (2015) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol Jun;35(6):581-92.
Dandan Chen TXaJB (2007) Biological effects induced by nanosilver particles: in vivo study. Biomedical Materials;2:S126-S8.
Chithrani B, Ghazani,AA, Chan WCE (2006) Determining the size and shape dependence of gold nanoparticle uptake by mammalian cells Nano Letter;7:1542-50.
Drake Pl HK (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg;49(7):475-85.
Foldbjerg RW, J. Beer, C.Thorsen, K.Sutherland, D. S.Autrup, H. (2013) Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines. Chem Biol Interact Jun 25;204(1):28-38.
D Lapuente J RD, Poderron C, Di Guglielmo C , Borras M (2010) In vitro cytotoxicity and cellular uptake of gold nanoparticles. J Toxlet;196:S284.
Hussain SMH, K.L, Gearhart,J.M, Geiss,K.T,. Schhlager ,J.J (2005) In vitro toxicity of nanoparticlwa in BRL3A rat liver cells. ToxicolIn Vitro, Thirteenth International Workshop on In Vitro Toxicology Thirteenth Workshop on In Vitro Toxicology 19:975-83.
Hussain SM, Javorina, A. K., Schrand, A. M., Duhart, H. M., Ali, S. F. & Schlager, J. J (2006 ) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci;92:456-63.
Jiang W KB, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response in size-dependent. Nat Nanotechnol;3:145-50.
Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S (2009) Silver nanoparticles inhibit VEGFand IL-1beta-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells. J Nanobiotechnology;7:8.
Haase AR, S.Mantion, A.Graf, P.Plendl, J.Thunemann, A. F.Meier, W. P.Taubert, A.Luch, A.Reiser, G. (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci Apr;126(2):457- 68.
Hsin YH, Chen, Cf; Huang, S Shic TS, Lai,PS,y Chueh, PJ (2008) The apoptotic effect of nanosilver is mediated by ROS-and JNK dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett;179:130-9.
Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med Mar 15;40(6):928-39.
Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell Mar 11;120(5):649- 61.
Kim Y, Yang SI, Ryu JC (2010) Cytotoxicity and genotoxicity of nano-silver in mammalian cells lines. Mol Cell Toxicol;6:119-25.
AvilaLagunes L (2013) Determinación de la Plata coloidal en la inducción de la Hemoxigenasa 1 [Maestria en Investigacion Biomédica]. Xalapa Veracruz: Universidad de Veracruz.
Sompol P, Ittarat W, Tangpong J, Chen Y, Doubinskaia I, Batinic-Haberle I, et al. (2008) A neuronal model of Alzheimer’s disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience Apr 22;153(1):120-30.
Saavedra OMyc (2010) “Radicales libres y su papel en las enfermedades crónico degenerativas”. . Revista Médica de la Universidad Veracruzana:32-9.
Konigsberg FM (2008) “Radicales Libres y Estrés Oxidativo”. Editorial El Manual Moderno SAdCV, editor. México D.F
Ghosh M MJ, Sonai- S, et al. (2012) In Vitro and In Vivo genotoxicity of silver nanoparticles Mut Res;749(1-2): 60-9.
Ha Ryong Kim YJP, Da Young Shin, Seung Min Oh, Kyu Hyuck Chung (2013) Appropiate in vitro methods for genotoxicity testing of silver nanoparticles. Enviromental Health and Toxicology;28:1-8.
Elda Maria del Rocio Coutiño Rodríguez AP, Rocio Anais Pérez Gutíerrez. Plata Coloidal repercusiones en la salud CongresoXXVII Nacional de Bioquímica Mérida, Yucatan2008.
Ahamed Myc (2010) “Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster”. . Toxicology and Applied Pharmacology;242:263-9.
Ahamed MySM (2007) Low level lead esposure and oxidative stress. Current opinion in ClinChim Acta 387:5764.
Regalado S, Ana Lilia, Coutiño Rodriguez Elda Maria del Rocio. Plata coloidal induccion de la defensa inmune primaria en linfocitos humanos en cultivo. Congreso Nacional de Bioquímica en México; Oaxaca Oaxaca2012.
Nishanth RP, Jyotsna RG, Schlager JJ, Hussain SM, Reddanna P Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-NFkappaB signaling pathway. Nanotoxicology Dec;5(4):502-16.
Greulich C, Kittler S, Epple M, Muhr G, Koller M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg May;394(3):495-502.
Seung- Heon Shin MKY, Hae-Sic Kim, Hyung- Suk Kang (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. International Immunopharmacology;7:1813- 8.
Yeng HJ HS, Tsai CL. (2009) Citotoxicity and Inmunological Response of Gold and Silver Nanoparticles of different Sizes. Small;5(13):1553-61.
Boraschi D, Constantino,L.,Italiani, P (2011) Interaction of nanoparticles with inmunocompetent cel l s : nanosafety considerations. Nanomed;7:121-31.
Angela Veraldini ASC, Vanessa Bolejack, Lucia Miligi, Paolo Vineis, and Henk Van Loveren (2006) Inmunotoxic Effects of Chemicals: A matrix for Ocuppacional and Enviromental Epidemiological Studies. American Journal of Insdustrial Medicine;49:1046-55.
Armando Vega-Lópeza MLD-L, Luí s Jiménez-Zamudioc y Ethel García-Latorreb INMUNOTOXICIDAD, PROTOCOLOS PARA SU ESTUDIO: REVISIÓN BIBLIOGRÁFICA Jorge Ortiz Reyes,m Jacinto Elias Sedeño, Eugenio Lopez Lopez 2009. Available from: http://m. ipn.mx/pdf/ENCB/ENCB/WPS/WPS/WCM/ CONNECTI/2DA7F980462
Klippstein R F-MR, Castillo PM, Zaderenko AP, Pozo D, editor. Silver Nanoparticles Interactions with the Immune System: Implications for Health and Disease, : Pozo Perez D, Ed.; 2010.
Haase AM, A.Graf, P.Plendl, J.Thuenemann, A. F.Meier, W.Taubert, A.Luch, A. (2012) A novel type of silver nanoparticles and their advantages in toxicity testing in cell culture systems. Arch Toxicol Jul;86(7):1089-98.
Avila- Lagunes Lucerito O, Arroyo Huelguera y Elda Maria del Rocio, Coutiño-Rodriguez (2013) Hemooxigenasa 1: Su importancia en los mecanismos de oxidación y su relación con enfermedades no infecciosas. UniverSalud ( antes Altepel kli);9(17):56- 61.
Piao MJ, Kang, K.A., Lee, I.K., Kim, H.S., Kim, S., Choi, J.Y., Choi, J., Hyun, J.W (2011) Silver nanoparticles induce oxidative damage in human liver cells througn inhibition of reduced glutathione and induction ofmitocondria- involved apoptosis. Toxicology Letters;201:92-100.
Avila Lagunes yEMdRC, editor. Colloidal Silver: Induction of heme oxigenase 1 and its association with 8 isoprostanes. 20th Annual Meeting of the Society for Free Radicals Biology and Medicine; 2013; Grand Hilton in San Antonio Texas USA: Free Radical Biology and Medicine
Borm P. J. A. RD, Haubold S. et al. (2006) The potential risks of nanomaterials: a review carried out for ECETOC”. . Part Fiber Toxicol;3:22.
Coutino RR (1979) Analysis of anaphase in cell culture: an adequate test system for the distinction between compounds which selectively alter the chromosome structure or the mitotic apparatus. Environ Health Perspect Aug;31:131-6.
Velázquez PM, Prieto- Gomez Berta y Contreras Perez Rocio. (2004 ) El envejecimiento y los radicales libres. . Ciencias 75:36-43.
Lydia Gutiérrez González MJHJyLMB (2013) Daños para la salud tras la exposición laboral a nanoparticulas Medicina y Seguridad en el trabajo;59(231):276-96.
Sara A. Love MSAL, Melissa A. Maurer-Jones, John W. Thompson, Yu-Shen Lin, and Christy L. Haynes (2012) Assessing Nanoparticle Toxicity. Annu Rev Anal Chem 5:181-205.