2015, Number 4
<< Back Next >>
Rev Educ Bioquimica 2015; 34 (4)
Motilidad de las bacterias marinas del género vibrio
González TY, Dreyfus G
Language: Spanish
References: 26
Page: 98-108
PDF size: 966.82 Kb.
ABSTRACT
The bacterial flagellum is a locomotion organelle widely used by prokaryote organisms,
it constitutes an adaptive advantage and is a very important colonization and
pathogenesis factor. The flagellum is a heteromultimeric complex formed by nearly
30 different proteins and is divided in three substructures: the filament, the hook and
the basal body. In this review, we will describe how the
Vibrio marine bacteria move
through liquid media by means of the polar flagellum, whose rotation is sodium (Na
+)
driven and how some other species like
Vibrio alginolyticus, Vibrio parahaemolyticus
or
Vibrio shilonii are able to express, additionally on solid media, a lateral flagella
system whose rotation is proton (H
+) driven.
REFERENCES
Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634– 644. doi: 10.1038/nrmicro2405
Kirov SM (2003) Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol Lett 224:151–159. doi: 10.1016/ S0378-1097(03)00445-2
Terashima H, Fukuoka H, Yakushi T, Kojima S, Homma M (2006) The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation. Mol Microbiol 62:1170–1180. doi: 10.1111/j.1365-2958.2006.05435.x
Terashima H, Koike M, Kojima S, Homma M (2010) The Flagellar Basal Body-Associated Protein FlgT Is Essential for a Novel Ring Structure in the Sodium-Driven Vibrio Motor. J Bacteriol 192:5609–5615. doi: 10.1128/ JB.00720-10
McCarter LL (2001) Polar Flagellar Motility of the Vibrionaceae. Microbiol Mol Biol Rev 65:445–462. doi: 10.1128/MMBR.65.3.445- 462.2001
Zhao X, Norris SJ, Liu J (2014) Molecular Architecture of the Bacterial Flagellar Motor in Cells. Biochemistry (Mosc) 53:4323–4333. doi: 10.1021/bi500059y
Macnab RM (2003) How Bacteria Assemble Flagella. Annu Rev Microbiol 57:77–100. doi: 10.1146/annurev.micro.57.030502.090832
González Y, Venegas D, Mendoza-Hernandez G, Camarena L, Dreyfus G (2010) Na+- and H+-dependent motility in the coral pathogen Vibrio shilonii. FEMS Microbiol Lett 312:142– 150. doi: 10.1111/j.1574-6968.2010.02110.x
Yorimitsu T, Homma M (2001) Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta BBA - Bioenerg 1505:82–93. doi: 10.1016/ S0005-2728(00)00279-6
Prouty MG, Correa NE, Klose KE (2001) The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of ıt Vibrio cholerae. Mol Microbiol 39:1595–1609.
Macnab RM (2004) Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta BBA - Mol Cell Res 1694:207–217. doi: 10.1016/j.bbamcr.2004.04.005
Yonekura K, Maki-Yonekura S, Homma M (2011) Structure of the Flagellar Motor Protein Complex PomAB: Implications for the Torque-Generating Conformation. J Bacteriol 193:3863–3870. doi: 10.1128/JB.05021-11
McCarter LL (2006) Motility and Chemotaxis. Biol. Vibrios. ASM, Press, pp 115–132.
Allen RD, Baumann P (1971) Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J Bacteriol 107:295–302.
Atsumi T, McCarter L, Imae Y (1992) Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–4.
Merino S, Shaw JG, Tomás JM (2006) Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol Lett 263:127–135. doi: 10.1111/j.1574-6968.2006.00403.x
Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M (1996) The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol 20:693–699. doi: 10.1111/j.1365-2958.1996.tb02509.x
Belas R, Simon M, Silverman M (1986) Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J Bacteriol 167:210–8.
González Y, Camarena L, Dreyfus G (2015) Induction of the lateral flagellar system of Vibrio shilonii is an early event after inhibition of the sodium ion flux in the polar flagellum. Can J Microbiol 61:183–191. doi: 10.1139/ cjm-2014-0579
Aizawa SI, Dean GE, Jones CJ, Macnab RM, Yamaguchi S (1985) Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium. J Bacteriol 161:836–849.
Larsen MH, Boesen HT (2001) Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol Lett 203:149–152. doi: 10.1111/j.1574- 6968.2001.tb10833.x
Lee J-H, Rho JB, Park K-J, Kim CB, Han Y-S, Choi SH, Lee K-H, Park S-J (2004) Role of Flagellum and Motility in Pathogenesis of Vibrio vulnificus. Infect Immun 72:4905–4910. doi: 10.1128/IAI.72.8.4905-4910.2004
Josenhans C, Suerbaum S (2002) The role of motility as a virulence factor in bacteria. Int J Med Microbiol 291:605–614. doi: 10.1078/1438-4221-00173
Thompson FL, Austin B, Swings J (2006) The Biology of Vibrios. American Society of Microbiology.
Rasmussen L, White EL, Pathak A, Ayala JC, Wang H, Wu J-H, Benitez JA, Silva AJ (2011) A High-Throughput Screening Assay for Inhibitors of Bacterial Motility Identifies a Novel Inhibitor of the Na+- Driven Flagellar Motor and Virulence Gene Expression in Vibrio cholerae. Antimicrob Agents Chemother 55:4134–4143. doi: 10.1128/AAC.00482-11
Suaste-Olmos F, Domenzain C, Mireles- Rodríguez JC, Poggio S, Osorio A, Dreyfus G, Camarena L (2010) The Flagellar Protein FliL Is Essential for Swimming in Rhodobacter sphaeroides. J Bacteriol 192:6230–6239. doi: 10.1128/JB.00655-10