2015, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2015; 34 (4)
Motilidad de las bacterias marinas del género vibrio
González TY, Dreyfus G
Idioma: Español
Referencias bibliográficas: 26
Paginas: 98-108
Archivo PDF: 966.82 Kb.
RESUMEN
El flagelo bacteriano es un organelo de locomoción ampliamente utilizado entre los
organismos procariontes, constituye una ventaja adaptativa y es un factor muy importante
tanto para la colonización de nichos como para la patogénesis. El flagelo
es un heteromultímero formado por alrededor de 30 diferentes proteínas y está
dividido en tres subestructuras: filamento, gancho y cuerpo basal. En este trabajo
de revisión, describiremos la estructura, biogénesis y funcionamiento del flagelo de
las bacterias marinas del género
Vibrio y explicaremos cómo se desplazan en medio
líquido haciendo uso del flagelo polar, cuya rotación está acoplada a un flujo de iones
sodio (Na
+) y cómo algunas otras especies del género como
Vibrio alginolyticus,
Vibrio parahaemolyticus o
Vibrio shilonii, son capaces de expresar, adicionalmente
al desplazarse en medio sólido, un sistema de flagelos laterales cuya rotación está
acoplada a un flujo de protones (H
+).
REFERENCIAS (EN ESTE ARTÍCULO)
Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634– 644. doi: 10.1038/nrmicro2405
Kirov SM (2003) Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol Lett 224:151–159. doi: 10.1016/ S0378-1097(03)00445-2
Terashima H, Fukuoka H, Yakushi T, Kojima S, Homma M (2006) The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation. Mol Microbiol 62:1170–1180. doi: 10.1111/j.1365-2958.2006.05435.x
Terashima H, Koike M, Kojima S, Homma M (2010) The Flagellar Basal Body-Associated Protein FlgT Is Essential for a Novel Ring Structure in the Sodium-Driven Vibrio Motor. J Bacteriol 192:5609–5615. doi: 10.1128/ JB.00720-10
McCarter LL (2001) Polar Flagellar Motility of the Vibrionaceae. Microbiol Mol Biol Rev 65:445–462. doi: 10.1128/MMBR.65.3.445- 462.2001
Zhao X, Norris SJ, Liu J (2014) Molecular Architecture of the Bacterial Flagellar Motor in Cells. Biochemistry (Mosc) 53:4323–4333. doi: 10.1021/bi500059y
Macnab RM (2003) How Bacteria Assemble Flagella. Annu Rev Microbiol 57:77–100. doi: 10.1146/annurev.micro.57.030502.090832
González Y, Venegas D, Mendoza-Hernandez G, Camarena L, Dreyfus G (2010) Na+- and H+-dependent motility in the coral pathogen Vibrio shilonii. FEMS Microbiol Lett 312:142– 150. doi: 10.1111/j.1574-6968.2010.02110.x
Yorimitsu T, Homma M (2001) Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta BBA - Bioenerg 1505:82–93. doi: 10.1016/ S0005-2728(00)00279-6
Prouty MG, Correa NE, Klose KE (2001) The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of ıt Vibrio cholerae. Mol Microbiol 39:1595–1609.
Macnab RM (2004) Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta BBA - Mol Cell Res 1694:207–217. doi: 10.1016/j.bbamcr.2004.04.005
Yonekura K, Maki-Yonekura S, Homma M (2011) Structure of the Flagellar Motor Protein Complex PomAB: Implications for the Torque-Generating Conformation. J Bacteriol 193:3863–3870. doi: 10.1128/JB.05021-11
McCarter LL (2006) Motility and Chemotaxis. Biol. Vibrios. ASM, Press, pp 115–132.
Allen RD, Baumann P (1971) Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J Bacteriol 107:295–302.
Atsumi T, McCarter L, Imae Y (1992) Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–4.
Merino S, Shaw JG, Tomás JM (2006) Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol Lett 263:127–135. doi: 10.1111/j.1574-6968.2006.00403.x
Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M (1996) The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol 20:693–699. doi: 10.1111/j.1365-2958.1996.tb02509.x
Belas R, Simon M, Silverman M (1986) Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J Bacteriol 167:210–8.
González Y, Camarena L, Dreyfus G (2015) Induction of the lateral flagellar system of Vibrio shilonii is an early event after inhibition of the sodium ion flux in the polar flagellum. Can J Microbiol 61:183–191. doi: 10.1139/ cjm-2014-0579
Aizawa SI, Dean GE, Jones CJ, Macnab RM, Yamaguchi S (1985) Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium. J Bacteriol 161:836–849.
Larsen MH, Boesen HT (2001) Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol Lett 203:149–152. doi: 10.1111/j.1574- 6968.2001.tb10833.x
Lee J-H, Rho JB, Park K-J, Kim CB, Han Y-S, Choi SH, Lee K-H, Park S-J (2004) Role of Flagellum and Motility in Pathogenesis of Vibrio vulnificus. Infect Immun 72:4905–4910. doi: 10.1128/IAI.72.8.4905-4910.2004
Josenhans C, Suerbaum S (2002) The role of motility as a virulence factor in bacteria. Int J Med Microbiol 291:605–614. doi: 10.1078/1438-4221-00173
Thompson FL, Austin B, Swings J (2006) The Biology of Vibrios. American Society of Microbiology.
Rasmussen L, White EL, Pathak A, Ayala JC, Wang H, Wu J-H, Benitez JA, Silva AJ (2011) A High-Throughput Screening Assay for Inhibitors of Bacterial Motility Identifies a Novel Inhibitor of the Na+- Driven Flagellar Motor and Virulence Gene Expression in Vibrio cholerae. Antimicrob Agents Chemother 55:4134–4143. doi: 10.1128/AAC.00482-11
Suaste-Olmos F, Domenzain C, Mireles- Rodríguez JC, Poggio S, Osorio A, Dreyfus G, Camarena L (2010) The Flagellar Protein FliL Is Essential for Swimming in Rhodobacter sphaeroides. J Bacteriol 192:6230–6239. doi: 10.1128/JB.00655-10