2017, Number 3
<< Back Next >>
Rev Mex Neuroci 2017; 18 (3)
Klingler´s Technique for visualization of the hypothalamus, 42 years after its original description in our country
Jiménez-Ruiz A, Ruiz-Razura A
Language: Spanish
References: 57
Page: 49-54
PDF size: 591.46 Kb.
ABSTRACT
The development of neuroscience, especially the use of magnetic
resonance imaging has evolved descriptive neuroanatomy to a
radiological point of view, with excellent results. However, gross
anatomical dissection, will always be the best way to visualize the
different central nervous system structures, to learn basic morphology,
understand function and its correlation with pathological processes.
We analyze a book that was published in 1974 at Universidad de
Guadalajara where the author exemplifies the visualization of the
hypothalamus through Dr. Josef Klingler´s technique. Although
published 42 years ago, it is still current today. We hope this article
encourages the new generation of neuroscience students to learn the
roots of the classic teachings of neuroanatomy in its most basic and
primary form.
REFERENCES
Cavadas C, Aveleira C, Souza G, Velloso L. The pathophysiology of defective proteostasis in the hypothalamus-from obesity to ageing. Nature Reviews Endocrinology 2016 Dec;12(12):723-733.
Franco R , Fonoff ET, Alvarenga P, Lopes AC, Miguel EC, Teixeira MJ et al. Dee Brain Stimulation for Obesity. Brain Sci. 2016 Jul 18;6(3).
Saleem SN, Said AH, Lee DH. Lesions of the hypothalamus: MR imaging diagnostic features. Radiographics. 2007 Jul-Aug;27(4):1087-108.
Ruiz Razura A. El Hipotálamo Visto a Través de la Técnica de Kingler. Primera Edición. Departamento Editorial de la Universidad de Guadalajara, 1974.
Agrawal A, Kapfhammer JP, Kress A, Wichers H, Deep A, Feindel W et al. Josef Klingler’s models of white matter tracts: influences on neuroanatomy, neurosurgery, and neuroimaging. Neurosurgery. 2011 Aug;69(2):238-52.
Türe U, Yaşargil MG, Friedman AH, Al-Mefty O. Fiber dissection technique: lateral aspect of the brain. Neurosurgery. 2000 Aug;47(2):417-26.
Ojeda J, José M. Icardo J,.Teaching images in Neuroanatomy: Value of the Klinger method Eur. J Anat, 15 (3): 136-139 (2011).
William R.J.P ,an introduction to the biochemistry of Zinc, Mills, C.F eds. Zinc in Human Biology ;15- 31 springer-Verlag Berlin, Germany, 1989.
Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev 1993;73:79-118.
Ebadi M, Elsayed MA, Aly MHM. The importance of zinc and metallothionein in brain. Biol Signals 1994; 3: 123-6.
Beltrán R, Martínez-Balbás A, Bernués J, Bowater R, Azorín F. Characterization of the zinc-induced structural transition to * H-DNA at a d(GA.CT)22 sequence. J MolBiol 1993; 230: 966-78.
Fraker PJ, Telford WG. A reappraisal of the role of zinc in life and death decisions of cells. ProcSocExpBiol Med 1997; 215: 229-36.
Green A, Parker M, Conte D, Sarkar B. Zinc finger proteins: A bridge between transition metals and gene regulation. J Trace Elem Exp Med 1998; 11: 103-18.
López-García C, Molowny A, Ponsoda X, Nácher J, Sancho-Bielsa F. Zinc sináptico en el sistema nervioso central. REV NEUROL 2001; 33 (4): 341-347
Mayer ML, Vyklicky LJ, Westbrook GL. Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J Physiol Lond 1989; 415: 329-50.
Smart TG, Moss SJ, Xie X, Huganir RL. GABAA receptors are differentially sensitive to zinc: Dependence on subunit composition. Br J Pharmacol 1991; 103: 1837-9.
Stengaard-Pedersen K. Inhibition of enkephalin binding to opiate receptors by zinc ions: possible physiological importance in the brain. Acta Pharmacol Toxicol Copenh 1982; 50: 213-20.
Cuajungco MP, Lees GJ. Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis. 1997;4(3-4):137-69.
Avan A, Hoogenraad Zinc and Copper in Alzheimer’s Disease. J Alzheimers Dis. 2015;46(1):89-92
Stelmashook EV, Isaev NK, Genrikhs EE, et al. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry (Mosc). 2014 May;79(5):391-6.
Hitchler MJ, Domann FE. Regulation of Cu Zn SOD and its redox signaling potential: implications for amyotrophic lateral sclerosis. Antioxid Redox Signal. 2014 Apr 1;20(10):1590-8.
Jiménez-Jiménez FJ, Molina JA, Aguilar MV, et al. Cerebrospinal fluid levels of transition metals in patients with Parkinson’s disease. J Neural Transm (1998) 105: 497–505
Manzerra P, Behrens MM, Heidinger V, Ichinose T, Yu SP & Choi DW. Zinc exposure results in the activation of Src kinase and the phosphorylation of NMDA receptor subunits (NR2A/2B). Society for Neuroscience Abstract (2000), 26, 2145.
González Triana C, Sánchez C, González Quevedo A et al. Serum and Cerebrospinal fluid levels of copper, iron and zinc in patiens with Ataxia type SCA-2 from the province of Holguin in Cuba. Therapeutic Basic” Dialog Clin Neurosci 2015;3(4):12-16.
Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, et al. Oral Zinc Sulphate Supplementation for Six Months in SCA2 Patients: A Randomized, Double-Blind, PlaceboControlled Trial Neurochem Res (2011) 36:1793–1800
Smart TG, Hosie AM, Miller PS. Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. The Neuroscientist. 2004;10:432–42.
Beaulieu C, Dyck R, Cynader M. Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. Neuroreport. 1992;10:861–4.
Cole TB, Wenzel HJ, Kafer KE, Schwartzkorin PA, Palmiter RD. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA. 1999;96:1716–21.
Li Y, Hough CJ, Suh SW, Sarvey JM, Frederickson CJ. Rapid translocation of Zn2+ from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation Neurophysiol. 2001;86:2597–604.
Ruiz A, Walker MC, Fabian Fine R, Kullmann DM. Endogenous zinc inhibits GABAA receptors in a hippocampal pathway. J Neurophysiol. 2004;91:1091-6.
Wang Z, Danscher G, Kim YK, Dahlstrom A, Jo SM. Inhibitory zinc-enriched terminals in the mouse cerebellum: Double-immunohistochemistry for zinc transporter 3 and glutamate decarboxylase. Neurosci Lett. 2002;321:37–40.
Wang ZY, Stoltenberg M, Huang L, Dansher G, Dahlstrom A, Shi Y, Li JY. Abundant expression of zinc transporters in Bergman glia of mouse cerebellum. Brain Res Bull. 2005;64:441–8.
Frederickson CJ, Cuajungco MP, LaBuda CJ, Suh SW. Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience. 2002;115:471–4.
Laurie DJ, Seeburg PH, Wisden W. The distribution of thirteen GABA-A receptor subunit mRNAs in rat brainL II. Olfactory bulb and cerebellum. J Neurosci. 1992;12:1063–76.
Mitchell SJ, Silver RA. GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J Neurosci. 2000;20:8651–8.
Misra C, Brickley SG, Wyllie DJ, Cull-Candy SG. Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells. J Physiol. 2000;525:299–305.
Wall MK. A role for zinc in cerebellar synaptic transmission? Cerebellum 2005; 4: 224–229.
Clarke CE, Veale EL, Green PJ, Meadows HJ, Mathie A. Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current IKSO, by zinc. J Physiol. 2004;560:51–62.
Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG. Subunitdependent highaffinity zinc inhibition of acid sensing ion channels. J Neurosci. 2004;24:8678–89.
Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expaned CAG/ glutamine repeats. Nature Genet 1996; 14: 285-91.
Velázquez L. Ataxia Espinocerebelosa tipo 2. Principales aspectos neurofisiológicos en el diagnóstico, pronóstico y evolución de la enfermedad. Primera edición. Ediciones Holguín. Holguín; 2006.
Velázquez L, Santos FN, García R, Paneque HM, Medina HE, Hechavarría PR. Las ataxias hereditarias en Cuba. Aspectos históricos, epidemiológicos, clínicos, electrofisiológicos y de neurología cuantitativa. Rev Neurol 2001; 32: 71-6.
Huynh DP, Yang HT, Vakharia H, Nguyen D, Pulst SM. Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet. 2003;12(13):1485-96.
Franco F, DiDonato S. Pathways to motor incoordination:the inherited ataxias. Nat Rev Neurosc. 2005;5:641-55.
Ross CA, Poirier MA, Wanker EE and Amzel M. Polyglutamine fibrillogenesis: the pathway unfolds. Proc Natl Acad Sci U S A. 2003;100(1):1-3.
Pepe I, Occhino E, Cella G, Luongo A, Guardascione F Gentile V. Biochemical mechanisms for a possible involvement of the transglutaminase activity in the pathogenesis of the polyglutamine diseases: minireview article. Amino Acids. 2004;26(4):431-34.
Michalik A, Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited. Human Molecular Genetics. 2003;12:173-86.
Koyano S, Iwabuchi K, Yagishita S, Kuroiwa Y, Uchihara T. Paradoxical absence of nuclear inclusion in cerebellar Purkinje cells of hereditary ataxias linked to CAG expansion. J Neurol Neurosurg Psychiatry. 2002;73:450-52.
Gunawardena S, Goldstein LS. Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways. Arch Neurol. 2005;62(1):46-51.
Wood. RJ. Assessment of Marginal Zinc Status in Humans. Journal of Nutrition. 130 (2000) 1350- 1354.
Wuehler. SE, Peerson. JM, Brown. KH. Estimation of the Global Prevalence of Zinc (Zn) Deficiency Using Using National Food Balance Data. Inform.2000 University of California.
Wall MJ. A role for zinc in cerebellar synaptic transmission?. Cerebellum 2005; 4: 224-9.
Saito T, Nakagawa N, Takahashi K, et al. Zinc-Induced Excessive Glutamate Release may Cause Accelerated Senescence with Defect in Learning and Memory in Senescence Accelerated Mouse. In Trace Elements in Man and Animals. Hosokawa Y, editor. New York: Springer, 2006. p.429-432.
Berg JM, Tymoczko JL,Stryer L. Biochemistry. New York: W. H. Freeman and Co.; 2002
Rodríguez-Labrada R, Velázquez-Pérez L, Seigfried C. Saccadic latency is prolonged in Spinocerebellar Ataxia type 2 and correlates with the frontal-executive dysfunctions. J Neurol Sci. 2011 Jul 15;306(1-2):103-7
Earl C., Chantry A., Mohammad N., Glynn, P. Zinc ions stabilise the association of basic protein with brain myelin membranes. J. Neurochem. 1988; 51(3): 718-24
Riccio P, Giovannelli S, Bobba A, Romito E, Fasano A, et al. Specificity of zinc binding to myelin basic protein. Neurochem Res. 1995 ;20(9):1107-13.