2013, Number 3
<< Back Next >>
Rev Educ Bioquimica 2013; 32 (3)
La levadura del pan como modelo para el estudio del poro de transición de la permeabilidad mitocondrial
Gutiérrez-Aguilar M, Corona PN
Language: Spanish
References: 15
Page: 91-96
PDF size: 405.73 Kb.
ABSTRACT
Mammalian mitochondria express a structurally unidentified unselective channel
termed the Mitochondrial Permeability Transition Pore. Studies designed to determine
the protein structure of this pore have been scarce mainly due to difficulties
in generating knock out organisms of potential pore components. In this scenario,
baker´s yeast (Saccharomyces cerevisiae) represents an appealing alternative since
it harbors a pore with similar characteristics. Given the available genetic tools as well
as the possibility for this yeast to grow with dysfunctional mitochondria for oxidative
phosphorylation, S. cerevisiae represents an attractive model to study the molecular
structure of the mitochondrial permeability transition pore.
REFERENCES
Lehninger AL ND, Cox MM (1993) Principles of Biochemistry Worth Publishers, New York, NY, USA: 1013.
Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett. 584:2504-2509.
Kerrigan CL, Stotland MA. (1993) Ischemia reperfusion injury: a review. Microsurgery. 14:165-175.
Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787: 1402-1415.
Halestrap AP (2009). What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46: 821-831.
Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P. (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA. 110:5887-5892.
Zoratti M, Szabo I (1995). The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139-176.
Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43: S31-44.
Prieto S, Bouillaud F, Ricquier D, Rial E (1992) Activation by ATP of a proton-conducting pathway in yeast mitochondria. Eur J Biochem 208: 487-491.
Manon S, Roucou X, Guerin M, Rigoulet M, Guerin B (1998) Characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore? J Bioenerg Biomembr 30: 419-429.
Jung DW, Bradshaw PC, Pfeiffer DR (1997) Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J Biol Chem. 272:21104-21112.
Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett. 584:2504-2509
Pavon N, Aranda A, Garcia N, Hernandez- Esquivel L, Chavez E (2009). In hyperthyroid rats octylguanidine protects the heart from reperfusion damage. Endocrine 35: 158-165.
Gutierrez-Aguilar M, Perez-Vazquez V, Bunoust O, Manon S, Rigoulet M, Uribe S (2007) In yeast, Ca2+ and octylguanidine interact with porin (VDAC) preventing the mitochondrial permeability transition. Biochim Biophys Acta 1767: 1245-1251.
Uribe-Carvajal, S, Luévano-Martínez, L A., Guerrero-Castillo, S., Cabrera-Orefice, A., Corona-de-la-Peña, N. A., Gutiérrez- Aguilar, M (2011) Mitochondrial Unselective Channels throughout the eukaryotic domain. Mitochondrion 11: 382–390.