2013, Número 3
<< Anterior Siguiente >>
Rev Educ Bioquimica 2013; 32 (3)
La ruta de señalización de la cinasa de proteínas tipo a dependiente del AMPc en Saccharomyces cerevisiae
Pérez-Landero S, Nieto-Sotelo J
Idioma: Español
Referencias bibliográficas: 35
Paginas: 95-105
Archivo PDF: 334.33 Kb.
RESUMEN
La fosforilación reversible de las proteínas regula una infinidad de procesos celulares.
La cinasa de proteínas dependiente del AMP cíclico (PKA) está presente en todos
los eucariontes (protozoarios, animales, algas y hongos) a excepción de las plantas
terrestres y su estudio ha revelado mecanismos importantes para la señalización
celular. Aquí se describen los componentes de la cascada de señalización de la PKA en
Saccharomyces cerevisiae, la compartamentalización de las subunidades regulatorias,
así como los mecanismos de regulación de la respuesta al estrés, la estimulación del
crecimiento filamentoso y la retro-regulación de la actividad de la PKA. El análisis
genético de los componentes de la vía PKA en S. cerevisiae ha arrojado información
muy detallada acerca de su evolución, de sus relaciones estructura-función y de su
operación mediante el desarrollo de modelos matemáticos y computacionales.
REFERENCIAS (EN ESTE ARTÍCULO)
Milenkovic L, Scott MP (2010) Not lost in space: trafficking in the Hedgehog signaling pathway. Sci Signal 3 p. pe14 [DOI: 10.1126/ scisignal.3117pe14].
Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33: 904-918.
Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70: 253-282.
Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM (2010) Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 10: 134-149.
Folch-Mallol JL, Martínez LM, Casas SJ, Yang R, Martínez-Anaya C, López L, Hernández A, Nieto-Sotelo J (2004) New roles for CDC25 in growth control, galactose regulation and cellular differentiation in Saccharomyces cerevisiae. Microbiology 150: 2865-2879.
Cannon J F, Tatchell K (1987) Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7: 2653-2663.
Skroblin P, Grossmann S, Schäfer G, Rosenthal W, Klussmann E (2010) Mechanisms of protein kinase A anchoring. Int Rev Cell Mol Biol 283: 235-330.
Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266: 15555-15558.
Hunter T, Plowman G D (1997) The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22: 18-22.
Bockmühl DP, Krishnamurthy S, Gerads M, Sonneborn A, Ernst JF (2001). Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 42:1243-57.
Kennedy EJ, Ghosh G, Pillus L (2008) Identification of functionally distinct regions that mediate biological activity of the protein kinase A homolog Tpk2. J Biol Chem 283: 1084-1093.
Pan X, Heitman J (2002) Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22: 3981-3993.
Robertson LS, Causton HC, Young RA, Fink GR (2000) The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci USA 97: 5984-5988.
Pérez-Landero S (2007) El papel de Hsf1 y Skn7 en la regulación de la respuesta a estrés en Saccharomyces cerevisiae a través de la vía Ras-AMPc-PKA. Tesis de Maestría. Programa de Maestría y Doctorado en Ciencias Bioquimicas, UNAM, 87 páginas.
Chevtzoff C, Vallortigara J, Avéret N, Rigoulet M, Devin A (2005) The yeast cAMP protein kinase Tpk3p is involved in the regulation of mitochondrial enzymatic content during growth. Biochim Biophys Acta 1706: 117-125.
Tudisca V, Recouvreux V, Moreno S, Boy- Marcotte E, Jacquet M, Portela P (2010) Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions. Eur J Cell Biol 89: 339-348.
Hu Y, Liu E, Bai X, Zhang A (2010) The localization and concentration of the PDE2- encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 10: 177-187.
Ma P, Wera S, Van Dijck P, Thevelein JM (1999) The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 10: 91-104.
Park JI, Grant CM, Dawes IW (2005) The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses. Biochem Biophys Res Commun 327: 311-319.
Jian D, Aili Z, Xiaojia B, Huansheng Z, Yun H (2010) Feedback regulation of Ras2 guanine nucleotide exchange factor (Ras2-GEF) activity of Cdc25p by Cdc25p phosphorylation in the yeast Saccharomyces cerevisiae. FEBS Lett 584:4745–4750.
Wang L, Renault G, Garreau H, Jacquet M (2004) Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae. Microbiology 150: 3383-3391.
Griffioen G, Swinnen S, Thevelein JM (2003) Feedback inhibition on cell wall integrity signaling by Zds1 involves Gsk3 phosphorylation of a cAMP-dependent protein kinase regulatory subunit. J Biol Chem 278: 23460-23471.
Hahn JS, Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279: 5169-5176.
Martinez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15: 2227- 2235.
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241-4257.
Garmendia-Torres C, Goldbeter A, Jacquet M (2007) Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Curr Biol 17: 1044- 1049.
Halladay JT, Craig EA (1995) A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant. Mol Cell Biol 15: 4890-4897.
Malcher M, Schladebeck S, Mösch H-U (2011) The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics 187: 717-730.
Cazzaniga P, Pescini D, Besozzi D, Mauri G, Colombo S, Martegani E (2008) Modeling and stochastic simulation of the Ras/cAMP/ PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. J Biotechnol 133: 377–385
Williamson T, Schwartz JM, Kell DB, Stateva L (2009) Deterministic mathematical models of the cAMP pathway in Saccharomyces cerevisiae. BMC Syst Biol. 3:70-84
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245-250.
Canaves JM, Taylor SS (2002) Classification and phylogenetic analysis of the cAMPdependent protein kinase regulatory subunit family. J Mol Evol 54:17-29.
Hardie DG. (1999) Plant protein serine/ threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 50: 97- 131.
Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC et al. (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117: 541-552.
Gehring C (2010) Adenyl cyclases and cAMP in plant signaling - past and present. Cell Communication and Signaling 8: 15 http:// www.biosignaling.com/content/8/1/15