2017, Number 2
<< Back Next >>
Rev Mex Neuroci 2017; 18 (2)
Central Cholinergic Transmission: Molecular Aspects
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C
Language: Spanish
References: 47
Page: 76-87
PDF size: 498.33 Kb.
ABSTRACT
Acetylcholine was discovered in 1921 and was the first monoamine
described with neurotransmission functions. The cholinergic
transmission comprises all the synapses where acetylcholine is the
main neurotransmitter. Acetylcholine can have both excitatory
and inhibitory actions through its two main receptors: nicotinic
and muscarinic. It exerts diverse effects and functions including
motor, neuroendocrine, parasympathetic and sensorial. In spite of
the recent advances in the understanding of the central cholinergic
neurotransmission, limitations still exist both at nicotinic and
muscarinic levels. The main purpose of this review is to describe key
molecular aspects regarding central cholinergic neurotransmission.
REFERENCES
Raju TN. The Nobel chronicles. 1936: Henry Hallett Dale (1875-1968) and Otto Loewi (1873-1961). Lancet (London, England). 1999;353(9150):416.
Picciotto M, Alreja M, Jentsch J. Acetylcholine. In: Davis KL, Charney D, Coyle JT, Nemeroff C, eds. Neuropsychopharmacology - 5th Generation of Progress. 5th ed. Philadelphia, Pennsylvania: Lippincott, Williams, & Wilkins; 2002: 3–14.
Millar NS, Gotti C. Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology. 2009;56(1):237–46.
Velazquez-Flores MA, Salceda R. Cys-loop ligand-gated ion channels modulation by protein kinases A and C. Rev Neurol. 2011;52(3):173–81.
Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.
Nordberg A. Human nicotinic receptors - Their role in aging and dementia. Neurochem Int. 1994;25(1):93–7.
Perry E, Martin-Ruiz C, Lee M, Griffiths M, Johnson M, Piggott M, et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol. 2000;393(1-3):215–22.
Sabbagh MN, Shah F, Reid RT, Sue L, Connor DJ, Peterson LKN, et al. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch Neurol. 2006;63(12):1771–6.
Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm. 2006;113(11):1625–44.
Mesulam M. The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem. 11(1):43–9.
Moulder KL, Cormier RJ, Shute AA, Zorumski CF, Mennerick S. Homeostatic effects of depolarization on Ca2+ influx, synaptic signaling, and survival. J Neurosci. 2003;23(5):1825–31.
CNS Forum Lundbeck Institute Image Bank. (Accessed May 20, 2016, at: http://institute.progress. im/en/image-bank
Mnatsakanyan N, Nishtala SN, Pandhare A, Fiori MC, Goyal R, Pauwels JE, et al. Functional Chimeras of GLIC Obtained by Adding the Intracellular Domain of Anion- and Cation-Conducting Cys-Loop Receptors. Biochemistry. 2015;54(16):2670–82.
Yakel JL. Gating of nicotinic ACh receptors: latest insights into ligand binding and function. J Physiol. 2010;588(Pt 4):597–602.
Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 2006;27(9):482–91.
Nashmi R, Lester HA. CNS localization of neuronal nicotinic receptors. J Mol Neurosci. 2006;30(1- 2):181–4.
Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89(1):73–120.
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life. 2009;61(4):407–23.
Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav Brain Res. 2011;221(2):555–63.
Ren X-Q, Cheng S-B, Treuil MW, Mukherjee J, Rao J, Braunewell KH, et al. Structural determinants of alpha4beta2 nicotinic acetylcholine receptor trafficking. J Neurosci. 2005;25(28):6676–86.
Kuo Y-P, Xu L, Eaton JB, Zhao L, Wu J, Lukas RJ. Roles for nicotinic acetylcholine receptor subunit large cytoplasmic loop sequences in receptor expression and function. J Pharmacol Exp Ther. 2005;314(1):455–66.
Castelán F, Mulet J, Aldea M, Sala S, Sala F, Criado M. Cytoplasmic regions adjacent to the M3 and M4 transmembrane segments influence expression and function of alpha7 nicotinic acetylcholine receptors. A study with single amino acid mutants. J Neurochem. 2007;100(2):406–15.
Hogg RC, Buisson B, Bertrand D. Allosteric modulation of ligand-gated ion channels. Biochem Pharmacol. 2005;70(9):1267–76.
Wu J, Ishikawa M, Zhang J, Hashimoto K. Brain imaging of nicotinic receptors in Alzheimer’s disease. Int J Alzheimers Dis. 2010;2010:548913.
Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF, et al. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol. 2006;9(2):175–89.
Waxman S, ed. Clinical Neuroanatomy. 26th ed. New York, New York: Lange Medical Books; 2009: 229-39.
Ishii M, Kurachi Y. Muscarinic acetylcholine receptors. Curr Pharm Des. 2006;12(28):3573–81.
Schulman H. Intracellular Signaling. In: Byrne JH, Roberts JLA, eds. From Molecules to Networks An Introduction to Cellular and Molecular Neuroscience. 2nd ed. San Diego, California: Academic Press, 2004: 335–70.
Waxham NM. Neurotransmitter Receptors. In: Byrne JH, Roberts JLA, eds. From Molecules to Networks An Introduction to Cellular and Molecular Neuroscience. 2nd ed. San Diego, California: Academic Press, 2004: 234–99.
May LT, Leach K, Sexton PM, Christopoulos A. Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol. 2007;47:1–51.
Bonner TI. The molecular basis of muscarinic receptor diversity. Trends Neurosci. 1989;12(4):148– 51.
Hulme EC, Birdsall NJ, Buckley NJ. Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol. 1990;30:633–73.
Davis CN, Bradley SR, Schiffer HH, Friberg M, Koch K, Tolf B-R, et al. Differential regulation of muscarinic M1 receptors by orthosteric and allosteric ligands. BMC Pharmacol. 2009;9:14.
Thomas RL, Mistry R, Langmead CJ, Wood MD, Challiss RAJ. G protein coupling and signaling pathway activation by m1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J Pharmacol Exp Ther. 2008;327(2):365–74.
Avlani VA, Langmead CJ, Guida E, Wood MD, Tehan BG, Herdon HJ, et al. Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol Pharmacol. 2010;78(1):94–104.
Spalding TA, Burstein ES. Constitutive activity of muscarinic acetylcholine receptors. J Recept Signal Transduct Res. 2006;26(1-2):61–85.
Heinrich JN, Butera JA, Carrick T, Kramer A, Kowal D, Lock T, et al. Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol. 2009;605(1-3):53–6.
Potter LT. Snake toxins that bind specifically to individual subtypes of muscarinic receptors. Life Sci. 2001;68(22-23):2541–7.
Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron. 2006;49(5):671–82.
Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat Rev Neurosci. 2011;12(2):73–87.
Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res. 2004;145:59–66.
Gautam D, Duttaroy A, Cui Y, Han S-J, Deng C, Seeger T, et al. M1-M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes. J Mol Neurosci. 2006;30(1-2):157–60.
Flynn DD, Reever CM, Ferrari-DiLeo G. Pharmacological strategies to selectively label and localize muscarinic receptor subtypes. Drug Dev Res. 1997;40(2):104–16.
Eglen RM. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol. 2006;26(3):219–33.
Origlia N, Kuczewski N, Aztiria E, Gautam D, Wess J, Domenici L. Muscarinic acetylcholine receptor knockout mice show distinct synaptic plasticity impairments in the visual cortex. J Physiol. 2006;577(Pt 3):829–40.
Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, et al. Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis. 2006;24(2):334–44.
Dalley JW, Everitt BJ. Dopamine receptors in the learning, memory and drug reward circuitry. Semin Cell Dev Biol. 2009;20(4):403–10.