2017, Number 4
<< Back Next >>
Med Int Mex 2017; 33 (4)
Taupathy in Alzheimer’s disease
de la Fuente-Rocha J
Language: Spanish
References: 37
Page: 515-521
PDF size: 205.77 Kb.
ABSTRACT
In the pathophysiology of Alzheimer’s disease, the study of amyloid beta has long been of great importance. In light of current knowledge, the involvement of insulin receptor activated kinase pathways at the neuronal level and particularly at the hippocampus levels should also be considered.
REFERENCES
García T, Jay D. Fosforilación de tau y enfermedad de Alzheimer. Gac Med Mex 2004;140(3): 329-333. http://www. scielo.org.mx/scielo.php?script=sci_arttext&pid=S0016- 38132004000300014&lng=es&tlng=es. Recuperado en 13 de mayo de 2016
Gra Menéndez S, Padrón Pérez N, Llibre Rodríguez J. Péptido beta amiloide, proteína Tau y enfermedad de Alzheimer. Revista Cubana de Investigaciones Biomédicas 2002;21(4):253-261.
Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Science 2004;117(24):5721-5729.
Maccioni R. Nuevas Avenidas hacia el diagnóstico y tratamiento de los desórdenes cognitivos: enfermedad de Alzheimer. Medwave 2008;8(11) http://www.medwave. cl/link.cgi/Medwave/Reuniones/3660?tab=metrica Recuperado el 13 de nov 2016.
Iqbal K, Alonso ADC, Chen S, Chohan MO, El-Akkad E, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta (BBA). Molecular Basis of Disease 2005;1739(2):198-210.
Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, et al. Tau, tangles, and Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2005;1739(2):216-223.
Carvajal-Castrillón J, Andrade Machado R, Aguirre-Acevedo DC, Montoya Arenas DA. Autobiographical memory in patients with temporal lobe epilepsy by hippocampal sclerosis. Acta Neurológica Colombiana 2016;32(2):100-107.
Bríñez-Horta JA, Oyuela-Vargas R. Effects of low doses of alcohol on declarative memory in humans. Universitas Psychologica 2011;10(3):923-935.
Kandel ER. Celular mechanisms of learning and biological basis of individuality. En: Kandel ER, Schwartz JH, Jessel TM, editors. Principles of neural sciences. 1a ed. New York: McGraw-Hill, 2000;1247-79.
Jagua A, Marín RA, Granados LA, Ávila V. Insulina cerebral. Colombia Médica 2008;39(1). http://bibliotecadigital. univalle.edu.co/xmlui/bitstream/handle/10893/4754/ Brain%20insulin.pdf?sequence=1. Recuperado el 2 de Noviembre de 2016
Ortiz Montero P. Estrés agudo en ratas y su efecto en la adquisición, consolidación y extinción de la memoria espacial: papel de la proteína quinasa erk1/2 y de las proteínas fosfatasas pp1 y pp2b en el hipocampo/Acute stress in rats and theireffectonacquisition, consolidation and extinction of spatialmemory: rol of theproteinkinase ERK1/2 and proteinphosphatases PP1 and PP2B in hippocampus (Doctoral dissertation, Universidad Nacional de Colombia). 2011. http://www.bdigital.unal.edu.co/4222/1/598185.2011. pdf Recuperado el 4 de octubr e de 2016
Zhao W, Chen H, Xu H, Moore E, et al. Brain insulin receptors and spatial memory. J Biol Chem 1999;274:34893-902.
Babri S, Badie HG, Kahamenei S, Seyedlar MO. Intrahippocampal insulin improves memory in a passive-avoidance task in male Wistar rats. BrainCogn 2007;64:86-91.
Pons F. E. Acciones de la insulina sobre el sistema nervioso central (SNC). Monografías de la Real Academia Nacional de Farmacia. 2010. file:///C:/Users/javier/Downloads/1051- 4143-1-PB.pdf Recuperado el 2 de no viembre de 2016
Reyes JAO, Plancarte AA. Bases moleculares de las acciones de la insulina. Revista de Educación Bioquímica 2008;27(1):9-18.
Ravichandran KS. Signalingvia Shc family adapter proteins. Oncogene 2001;20:6322-6330. http://www.nature.com/ onc/journal/v20/n44/full/1204776a.html recuperado el 5 de noviembre de 2016
Meloche S, Pouyssegur J. The ERK1/2 mitogen-activatedproteinkinasepathway as a master regulator of the G1-to S-phasetransition. Oncogene 2007;26(22):3227- 3239. http://www.nature.com/onc/journal/v26/n22/ full/1210414a.html
Winslow BT, Onysko MK, Stob CM, Hazlewood KA. Treatment of Alzheimer disease. Am Fam Phys 2011;83:1403-1412.
Flores-Vieyra R, Raya-Pérez JC, Torres-Márquez ME. Proteínas cinasas dependientes de Ca2+: características y activación. Revista de Educación Bioquímica 2005;24(3-4):74-80.
Lee CC, Huang CC, Wu MY, Hsu KS. Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway. J Biol Chem 2005;280:18543-550.
Jagua Gualdrón A, Ávila Ávila V. Insulin and Alzheimer disease: type 3 diabetes? Revista de la Facultad de Medicina. 2007; 55(1): 66-70. Colombia http://www.scielo.org.co/ scielo.php?pid=S0120-00112007000100009&script=sci_ arttext&tlng=es Recuperado el 6 de noviembre de 2016
Jiménez C, Hernández C, Pimentel B, Carrera AC. The p85 regulatory subunit controls sequential activation of phosphoinositide 3-kinase by tyrkinases and Ras. J Biol Chem 2002;277(44):41556-41562.
Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, et al. Regulation of the p85/p110 phosphatidylinositol 3’-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 1998;18(3):1379-1387.
Pinzón CE, Serrano ML, Sanabria MC. Papel de la vía fosfatidilinositol 3 kinasa (PI3K/Akt) en humanos. Revista Ciencias de la Salud 2009;7(2):47-66.
Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96: 857-868.
Medema RH, Kops GJ, Bos JL, Burgering BM. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000;404:782-787.
Tran H, Brunet A, Grenier JM, Datta SR, et al. DNA repair pathway stimulated by the Forkhead transcription factor FOXO3a through the GADD45 protein. Science 2002;296:530-534.
Osmanović-Barilar J. Inzulins kisustavmozga u eksperimental nomštak orskommodel usporadične Alzheimerovebolesti [Insulinsignaling in thebrain of experimental sporadic Alzheimer disease ratmodel] (Doctoral dissertation, Sveučilište u Zagrebu). 2013. http://medlib.mef. hr/1878/1/Osmanovic-Barilar_J_disertacija_rep_1878.pdf Recuperado el 17 de octuber de 2016
Dou JT, Chen M, Dufour F, Alkon DL, Zhao WQ. Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn Mem 2005;12:646-55.
Brazil DP, Yang ZZ, Hemmings BA. Advances in proteinkinase B signalling: AKT ion on multiple fronts. Trends Biochem Sci 2004;29:233-242.
Burns JM, Donnelly JE, Anderson HS, Mayo MS, Spencer-Gardner L, Thomas G, et al. Peripheral insulin and brain structure in early Alzheimer disease. Neurology 2007;69:1094-104.
Qui WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 2006;27:190-8.
Frölich L, Blum-Degen D, Bernstein HG, Engelsberger S, Hurnrich J, Laufer S, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 1998;105:423-38.
Wan Q, Xiong ZG, Man HY, Ackerley CA, et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 1997;338: 686-90.
Liu SJ, Zhang AH, Li HL, Wang Q, et al. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol- 3 kinase and proteinkinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem 2003;87:1333-44.
Leroy K, Yilmaz Z, Brion JP. Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 2007;33(1):43-55. https://www.ncbi.nlm.nih.gov/pubmed/ 17239007 Recuperado el 13 de Nov. de 2008
Hong M, Lee VM. Insulin and insulin-likegrowth factor-1 regulate Tau phosphorylation in cultured human neurons. J Biol Chem 1997;272:19547-53.