2017, Number 1
<< Back Next >>
VacciMonitor 2017; 26 (1)
Activation of the capsular polysaccharide serotype 23F of Streptococcus pneumoniae to obtain conjugate vaccine
Chang-Calderón J, Serrano-Rodríguez Y, Garrido-Arteaga R, Pedroso-Fernández J, Cardoso-San Jorge F, Rodríguez-Noda L, Santana-Mederos D, García-Rivero D, Valdés-Balbín Y, Vérez-Bencomo V
Language: Spanish
References: 21
Page: 8-16
PDF size: 233.63 Kb.
ABSTRACT
Nowadays conjugate vaccines are a major milestone in the development of drugs against infectious diseases. These
vaccines drastically reduce mortality and morbidity from different diseases caused by bacteria in children; but also
impact on non-vaccinated population. Conjugate vaccines are based on a covalent bond between a polysaccharide
and a carrier protein for which there are different chemical procedures. All conjugate procedures require the presence
of additional reactive groups that often are generated in both macromolecules. This work focus on the study of
the fragmentation reaction and peryodic oxidation on the capsular polysaccharide serotype 23F
Streptococcus
pneumoniae for use as a vaccine antigen. It was possible to establish the fragmentation reaction of the polysaccharide
by hydrolysis with acetic and trifl uoroacetic acid. Directly proportional ratio was found between numbers of moles
of sodium periodate and temperature on the oxidation reactions. In addition the glycerol-phosphate substituent was
found as important motif to preserve the antigenicity. The procedure allows immunogenic conjugate from capsular
polysaccharide serotype 23F of
Streptococcus pneumoniae in rabbit models.
REFERENCES
Simonsen L, Taylor RJ, Young-Xu Y, Haber M, May L, Klugman KP. Impact of pneumococcal conjugate vaccination of infants on pneumonia and infl uenza hospitalization and mortality in all age groups in the United States. MBio 2011;2:e00309-10.
Pilishvili T, Lexau C, Farley M, Hadler J, Harrison L, Bennett N, et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis 2010;201:32-41.
Lees A, Nelson B, Mond J. Activation of soluble polysaccharides with 1-cyano-4-dimethylaminopyridinium tetrafl uroborate for use in protein–polysaccharide conjugate vaccines and immunological reagents. Vaccine 1996;14:190–8.
Gildersleeve J, Oyelaran O, Simpson J, Allred B. Improved Procedure for Direct Coupling of Carbohydrates to Proteins via Reductive Amination. Bioconjug Chem 2008;19(7):1485-90.
Paterson G, DunKan J. Recent advances in the fi eld of Salmonella Typhi vaccines. Human Vaccine 2010;6(5):379-84.
Qingrui H, Dongxia L, Aijun K, Wenqi A, Bei F, Xiaowei M, et al. PEG as a spacer arm markedly increases the immunogenicity of meningococcal group Y polysaccharide conjugate vaccine. Journal of Controlled Release 2013;172:382-9.
Pawlowski A, Kallenius G, Svenson S. Preparation of pneumococcal capsular polysaccharide-protein conjugate vaccines utilizing new fragmentation and conjugation technologies. Vaccine 2000;18(18):1873-85.
Soubal J, Peña L, Santana D, Valdés Y, García D, Pedroso J, et al. Procedure for the conjugation of the Streptococcus pneumoniae serotype 6B capsular polysaccharide to the tetanus toxoid. Biotecnología Aplicada 2013;30:208-15.
Kamerling J. Pneumococcal polysaccharides: A chemical view. En: Tomasz A, editor. Streptococcus pneumoniae: molecular biology and mechanisms of disease. New York: Mary Ann Lierbert, Inc.; 2000. p.85–93.
John S, Laskowich E, Michon F, Kaiser R, Arumugham R. Monitoring activation sites on polysaccharides by GC–MS. Anal Biochem 2006;358(1):136-42.
World Health Organization. Recommendations for the production and control of pneumococcal conjugate vaccine. Technical Report Series No 927. Geneva: WHO; 2005.
Bruckner J. Estimation of monosaccharides by the orcinolsulfuric acid reaction. Biochemical Journal 1995;60:200-5.
Porro M, Vitti S, Antoni G, Neri P. Modifi cations of Park-Johnson ferricyanide submicromethod for the assay of reducing groups in carbohydrates. Anal Biochem. 1981;118:301-6.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265-75.
Chang J, SerranoY, Garrido R, Pedroso J, Cardoso F, García D, et al. Caracterización de conjugados inmunogénicos de polisacárido capsular Streptococcus pneumoniae serotipo 14. VacciMonitor 2013;22(1):15-21.
World Health Organization. Training Manual for Enzyme-Linked Immunosorbent Assay for the Quantitation of Streptococcus pneumoniae Serotype-Specifi c IgG (Pn Ps ELISA). London: World Health Organization Pneumococcal Serology Reference Laboratories; 2016. Disponible en: https://www.vaccine.uab.edu/ ELISA%20protocol.pdf.
Richards J, Perry M. Structure of the specifi c capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23). Biochem Cell Biol 1988;66:758-71.
Chang J, Serrano Y, Garrido R, Rodríguez L, Pedroso J, Cardoso F, et al. Relevance of O-Acetyl and phosphoglycerol groups for the antigenicity of Streptococcus pneumoniae serotype 18C capsular polysaccharide. Vaccine 2012;30:7090-6.
Park S, Nahm M. L-rhamnose is often an important part of immunodominant epitope for pneumococcal serotype 23F polysaccharide antibodies in human sera immunized with PPV23. PLoSOne 2013;8:e83810. doi: 10.1371/journal.pone.0083810.
Charlotte C, Yu I, Manam V, Hepler R, PHennessey J. Carbohydrate composition analysis of bacterial polysaccharides: optimized acid hydrolysis conditions for HPAEC-PAD analysis. Anal Biochem 1992;201:343-9.
Kim J, Laskowich E, Michon F, Kaiser R, Arumugham R. Monitoring activation sites on polysaccharides by GC-MS. Anal Biochem. 2006;358:136-42.