2016, Number 4
<< Back Next >>
Rev Hosp Jua Mex 2016; 83 (4)
Variabilidad genética de Acinetobacter baumannii en un hospital de la Ciudad de México
Duarte-Escalante E, Reyes-Montes MR, Cureño-Díaz MA, Acosta-Altamirano G, Martínez-Herrera E, Frías-De León MG
Language: Spanish
References: 22
Page: 129-135
PDF size: 206.99 Kb.
ABSTRACT
Introduction. Acinetobacter baumannii infections frequently occur as outbreaks with high mortality rate due to
multidrug resistance. Molecular analysis of outbreaks has shown high genetic diversity and the presence of different
epidemic clones, but these have not been identified in hospitals of Mexico City. Aim. Determine the genetic
variability of
A. baumannii in a hospital in Mexico City.
Material and methods. The DNA of 12 multiresistant
isolates of
A. baumannii was amplified by RAPD using four random oligonucleotides. From the polymorphic
patterns a dendrogram was constructed by UPGMA, a multidimensional diagram of major components and
cophenetic correlation coefficient (CCCr) was calculated. Genetic diversity was estimated by Shannon index (I) and
Nei genetic diversity, using allele frequencies, expected heterozygosity for each population and the average
heterozygosity. The reproduction structure was determined by the rate of association (I
A).
Results. The dendrogram
showed the formation of six groups (I-VI), supported by bootstrap high values (› 73%), this group was corroborated by the major components diagram. Estimates of genetic diversity showed that groups IIb and III were the most and
least variables, respectively. The I
A values indicated a clonal reproduction system for IIa and IIb subgroups, and
recombinant for III and VI groups.
Conclusions. Genetic variability among isolates of
A. baumannii revealed the
presence of nine epidemic clones in the hospital.
REFERENCES
Al Atrouni A, Joly-Guillou ML, Hamze M, Kempf M. Reservoirs of non-baumannii Acinetobacter species. Front Microbiol 2016; 7: 49.
González-Villoria AM, Valverde-Garduno V. Antibiotic- Resistant Acinetobacter baumannii increasing success remains a challenge as a nosocomial pathogen. J Pathog Volume 2016, Article ID 7318075, 10 pages. Disponible en: http://dx.doi.org/10.1155/2016/731807
Zarrilli R. Acinetobacter baumannii virulence determinants involved in biofilm growth and adherence to host epitelial cells. Virulence 2016; 7: 367-8.
Ahmed SS, Alp E. Genotyping methods for monitoring the epidemic evolution of A. baumannii strains. J Infect Dev Ctries 2015; 9: 347-54.
Gräser Y, Klare I, Halle E, Gantenberg R, Buchholz P, Jacobi HD, et al. Epidemiological study of an Acinetobacter baumannii outbreak by using polymerase chain reaction fingerprinting. J Clin Microbiol 1993; 31: 2417-20.
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty second Informational Supplement. CLSI document M100-S25. Wayne: Clinical and Laboratory Standards Institute; 2015.
Reyes-Montes MR, Bobadilla del Valle M, Martínez-Rivera MA, Rodríguez-Arellanes G, Maravilla E, Sifuentes-Osornio J, et al. Relatedness analyses of Histoplasma capsulatum isolates from Mexican patients with AIDS-associated histoplasmosis by using histoplasmin electrophoretic profiles and randomly amplified polymorphic DNA patterns. J Clin Microbiol 1999; 37: 1404-8.
Tribuddharat C, Srifuengfung S, Chiangjong W. Preliminary study of randomly-amplified polymorphic DNA analysis for typing extended spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae. J Med Assoc Thai 2008; 91: 527-32.
Real R, Vargas JM. The probabilistic basis of Jaccard's index of similary. Syst Biol 1996; 45: 380-5.
Sneath PHA, Sokal RR. Taxonomic structure. In: Numerical Taxonomy. San Francisco: W. H. Freeman and Co.; 1973, p. 188-305.
Rholf FJ. Numerical taxonomy and multivariate analysis system. Exeter Sofware Inc., Nueva York. 2000.
Allnut TR, Newton AC, Lara A, Premoli A, Armesto JJ, Vergara R, et al. Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Mol Ecol 1999; 8: 975-87.
Nei M. Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 1973; 70: 3321-3.
Zhivotovsky LA. Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 1999; 8: 907-13.
Maynard-Smith J, Smith NH, O’Rourke M, Spratt BG. How clonal are bacteria? Proc Natl Acad Sci USA 1993; 90: 4384-8.
Haubold B, Hudson RR. LIAN 3.0: detecting linkage disequilibrium in multilocus data. Bioinformatics 2000; 16: 847-8.
Rynga D, Shariff M, Deb M. Phenotypic and molecular characterization of clinical isolates of Acinetobacter baumannii isolated from Delhi, India. Ann Clin Microbiol Antimicrob 2015; 14: 40.
Sikora M, Netsvyetayeva I, Golas M, Swoboda-Kopec E, Walter de Walthoffen S, Sawicka-Grzelak A, et al. The probability of the Acinetobacter baumannii strain clonal spreading in donor-recipient systems, as confirmed by the molecular analysis of randomly amplified polymorphic DNA. Transplant Proc 2011; 43: 3121-4.
Szejbach A, Mikucka A, Bogiel T, Gospodarek E. Usefulness of phenotypic and genotypic methods for metallo-beta lactamases detection in carbapenem-resistant Acinetobacter baumannii strains. Med Sci Monit Basic Res 2013; 19: 32-6.
Zanganeh Z, Eftekhar F. Correlation of oxacillinase gene carriage with the genetic fingerprints of imipenem-resistant clinical isolates of Acinetobacter baumannii. Jundishapur J Microbiol 2015; 8: e26545.
Trajkovska-Dokic E, Kotevska V, Kaftandzieva A, Jankoska G, Mircevska G, Petrovska M, et al. Phenotypic and genetic relationship of Acinetobacter baumannii isolates. Prilozi 2011; 2: 157-68.
Young LS, Sabel AL, Price CS. Epidemiologic, clinical, and economic evaluation of an outbreak of clonal multidrugresistant Acinetobacter baumannii infection in a surgical intensive care unit. Infect Control Hosp Epidemiol 2007; 28: 1247-54.