2016, Number 4
<< Back Next >>
Rev Cubana Invest Bioméd 2016; 35 (4)
Nanoparticles for antibacterial materials and titanium dioxide applications
Betancur HCP, Hernández MV, Buitrago SR
Language: Spanish
References: 98
Page: 366-381
PDF size: 329.98 Kb.
ABSTRACT
The constant occurrence of multiresistant microorganisms (bacteria, viruses, fungi) has increased the search for antibacterial materials that may be effective to be applied in various areas such as textile industry, animal feeding, water treatment, medical, drug and cosmetic industry. It is well known that inorganic antibacterial agents as silver, copper, zinc oxide and copper oxide nanoparticles have attired special attention in the course of time due to their stability and the absence of biosafety problems. Despite this, just recently, have the titanium dioxide nanoparticles been gaining more attention for biomedical application, since these particles become antibacterial agents through a process of photo-activation and present absorption of certain wavelengths depending on their inorganic phase (anatase, rutile or brookite). Nevertheless, the photocatalytic activity of the titanium dioxide ranges in the UV zone (ƛ › 387 nm), and this has required greater efforts in terms of research, to make the titanium dioxide have the auto-disinfection function in the visible light zone, so as to increase the number of uses in the biomedical industry. This article was aimed at making a critical literature review on the use of nanoparticles for antibacterial materials, and the applications of titanium dioxide, thus making emphasis on the mechanism of action of these particles with the biological systems and the possible changes with a view to improving its photocatalytic activity by means of the interaction with the visible light.
REFERENCES
Song J, Jang J. Antimicrobial polymer nanostructures: synthetic route, mechanism of action and perspective. Adv Colloid Interface Sci. 2014 Jan;203:37-50.
Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, et al. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C Mater Biol Appl. 2014 Jul 1;40:24-31.
Ávila Reyes C. Infecciones intrahospitalarias cuestan 727 mil millones anuales. UNperiódico. Feb 13 2011;(141):15.
Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013;228:596-613.
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB, et al. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009 Aug;34(2):103-10.
Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez de Aberasturi D, Larramendi IR De, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. Elsevier Ltd. 2012;30(10):499-511.
Soenen SJ, Rivera-Gil P, Montenegro J-M, Parak WJ, De Smedt SC, Braeckmans K, et al. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 2011 Oct;6(5):446-65.
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12-21.
Scuderi V, Buccheri MA, Impellizzeri G, Di Mauro A, Rappazzo G, Bergum K, et al. Photocatalytic and antibacterial properties of titanium dioxide flat film. Mater Sci Semicond Process. 2016;42:32-5.
Chen X, Mao SS. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem Rev. 2007;107(7):2891-959.
Lavilla Lerma L, Benomar N, Casado Muńoz M del C, Gálvez A, Abriouel H. Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production. Food Microbiol. 2015 Oct;51:33-44.
Michalak I, Chojnacka K. Encyclopedia of Toxicology. Encyclopedia of Toxicology. Elsevier; 2014. p. 461-3.
Bernatová S, Samek O, Pilát Z, Serý M, Jeek J, Jákl P, et al. Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules. Multidisciplinary Digital Publishing Institute. 2013 Jan 24;18(11):13188-99.
Ocampo PS, Lázár V, Papp B, Arnoldini M, Abel zur Wiesch P, Busa-Fekete R, et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother. 2014 Aug;58(8):4573-82.
Lequeux I, Ducasse E, Jouenne T, Thebault P. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur Polym J. 2014 Feb;51:182-90.
Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B Biointerfaces. 2012 Jun;94:143-50.
Dong C, Cairney J, Sun Q, Maddan OL, He G, Deng Y, et al. Investigation of Mg(OH)2 nanoparticles as an antibacterial agent. J Nanoparticle Res. 2010;12(6):2101-9.
Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171-8.
Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents. 2006;27(6):513-7.
Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res. 2007;9(3):479-89.
Zhang B, lin y, Tang X, He S, Xie G. Synthesis, characterization, and antimicrobial properties of Cu-inorganic antibacterial material containing lanthanum. J Rare Earths. Elsevier. 2010 Dec;28:451-5.
MAO C, ZHANG B, TANG X, LI H, HE S. Optimized preparation of zinc-inorganic antibacterial material containing samarium using response surface methodology. J Rare Earths. 2014 Sep;32(9):900-6.
Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng C. 2015 Dec;61:965-78.
Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B Biointerfaces. 2012 Jun 1;94:143-50.
Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, et al. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol. Elsevier GmbH. 2015;305(1):85-95.
de Azeredo HMC. Antimicrobial nanostructures in food packaging. Trends Food Sci Technol. 2013 Mar;30(1):56-69.
Novo M, Lahive E, Díez-Ortiz M, Matzke M, Morgan AJ, Spurgeon DJ, et al. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida. Environ Pollut]. Elsevier Ltd. 2015;205:385-93.
Liu Y, Liu Y, Liao N, Cui F, Park M, Kim H-Y, et al. Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles. Int J Biol Macromol. Elsevier B.V. 2015;79:638-43.
Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today. 2015 Jun;10(3):339-54.
Jayaprakash N, Judith Vijaya J, John Kennedy L, Priadharsini K, Palani P. Antibacterial activity of silver nanoparticles synthesized from serine. Mater Sci Eng C. Elsevier B.V. 2015;49:316-22.
Ma G, Liang X, Li L, Qiao R, Jiang D, Ding Y, et al. Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties. Chemosphere. 2014;100(2):146-51.
Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int. Elsevier. 2013;22(6):693-700.
Qian Y, Yao J, Russel M, Chen K, Wang X. Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens. Environ Toxicol Pharmacol. Elsevier B.V. 2015;39(2):736-46.
Manoharan C, Pavithra G, Dhanapandian S, Dhamodharan P. Effect of In doping on the properties and antibacterial activity of ZnO films prepared by spray pyrolysis. Spectrochim Acta Part A Mol Biomol Spectrosc. Elsevier B.V. 2015;149:793-9.
Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP, et al. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. 2009 Jun;33(6):587-90.
Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem. 2010;20(32):6789.
De B, Gupta K, Mandal M, Karak N. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties. Mater Sci Eng C. Elsevier B.V. 2015;56:74-83.
Lee Y-J, Kim S, Park S-H, Park H, Huh Y-D. Morphology-dependent antibacterial activities of Cu2O. Mater Lett. 2011 Mar;65(5):818-20.
Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B, et al. Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere. 2015 Sep 22;144:661-70.
Hassan MS, Amna T, Kim HY, Khil M-S. Enhanced bactericidal effect of novel CuO/TiO2 composite nanorods and a mechanism thereof. Compos Part B Eng. 2013 Feb;45(1):904-10.
Sohrabnezhad SH, Mehdipour Moghaddam MJ, Salavatiyan T. Synthesis and characterization of CuO-montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim Acta - Part A Mol Biomol Spectrosc. Elsevier B.V. 2014;125:73-8.
Yoosefi Booshehri A, Wang R, Xu R. Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chem Eng J. Elsevier B.V. 2015;262:999-1008.
Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol. Elsevier B.V. 2015;74:136-41.
Cai A, Sun Y, Chang Y, Guo A, Du L. Biopolymer-assisted in situ route toward Cu hollow spheres as antibacterial materials. Mater Lett. Elsevier. 2014;134:214-7.
Singh S, Mahalingam H, Singh PK. Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review. Appl Catal A Gen. 2013 Jul;462-463:178-95.
Chen X, Mao SS. Synthesis of Titanium Dioxide (TiO2) Nanomaterials. J Nanosci Nanotechnol. 2006;6(4):906-25.
Pencheva D, Bryaskova R, Kantardjiev T. Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater Sci Eng C. Elsevier B.V. 2012;32(7):2048-51.
Ashkarran AA, Hamidinezhad H, Haddadi H, Mahmoudi M. Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light. Appl Surf Sci. 2014 May;301:338-45.
Menard A, Drobne D, Jemec A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut. 2011 Mar;159(3):677-84.
Askeland DR, Phulé PP. Ciencia e Ingeniería de los Materiales. International Thomson Editores; 1998.
Avril L, Bourgeois S, Marco de Lucas MC, Domenichini B, Simon P, Addou F, et al. Thermal stability of Au-TiO2 nanocomposite films prepared by direct liquid injection CVD. Vacuum; 2015 Jun.
Piszczek P, Muchewicz Ż, Radtke A, Gryglas M, Dahm H, Różycki H, et al. CVD of TiO2 and TiO2/Ag antimicrobial layers: Deposition from the hexanuclear μ-oxo Ti(IV) complex as a precursor, and the characterization. Surf Coatings Technol. 2013 May;222:38-43.
Lee H, Song MY, Jurng J, Park Y-K. The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol. 2011 Nov;214(1):64-8.
Mahmoud MHH, Ismail AA, Sanad MMS. Developing a cost-effective synthesis of active iron oxide doped titania photocatalysts loaded with palladium, platinum or silver nanoparticles. Chem Eng J. 2012 Apr [cited 2015 Sep 15];187:96-103. Available from: http://www.sciencedirect.com/science/article/pii/S1385894712001477
Li C, Yoshimura M, Hotsuki N, Isobe T, Wang C, Matsushita S, et al. Processing of porous spherical Co-doped SiO2/Cu-grafted TiO2 hybrid particles for the decomposition of gaseous acetaldehyde in the dark and under visible light. Mater Lett. Elsevier. 2015;139:397-400.
Mori K, Maki K, Kawasaki S, Yuan S, Yamashita H. Hydrothermal synthesis of photocatalysts in the presence of and their application for degradation of organic compounds. Chem Eng Sci. 2008 Oct;63(20):5066-70.
Ahn J-H, Wang G, Kim Y-J, Lee H-M, Shin H-S. Synthesis and properties of Ti-O based nanowires. J Alloys Compd. 2010 Aug;504:S361-3.
Veréb G, Manczinger L, Oszkó A, Sienkiewicz A, Forró L, Mogyorósi K, et al. Highly efficient bacteria inactivation and phenol degradation by visible light irradiated iodine doped TiO2. Appl Catal B Environ. Elsevier B.V. 2013;129:194-201.
Zielińska A, Kowalska E, Sobczak JW, Łącka I, Gazda M, Ohtani B, et al. Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity. Sep Purif Technol. 2010 May 11;72(3):309-18.
Janković B, Marinović-Cincović M, Dramićanin M. Kinetic study of isothermal crystallization process of Gd2Ti2O7 precursor's powder prepared through the Pechini synthetic approach. J Phys Chem Solids. 2015 Oct;85:160-72.
Takamura H. Electrical conductivity of layered compounds in SrO-La2O3-TiO2 systems prepared by the Pechini process. Solid State Ionics. 2002 Dec 2;154-155:581-8.
Guglielmi M, Kickelbick G, Martucci A. Sol-Gel Nanocomposites. Springer; 2014.
Tobaldi DM, Pullar RC, Leoni M, Seabra MP, Labrincha JA. Nanosized titania modified with tungsten and silver: Microstructural characterisation of a multifunctional material. Appl Surf Sci. 2013 Dec;287:276-81.
Yadav HM, Otari S V, Koli VB, Mali SS, Hong CK, Pawar SH, et al. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J Photochem Photobiol A Chem. Elsevier B.V. 2014;280:32-8.
Hebeish AA, Abdelhady MM, Youssef AM. TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohydr Polym. 2013 Jan 16;91(2):549-59.
Yousef A, El-Halwany MM, Barakat NAM, Al-Maghrabi MN, Kim HY. Cu0- doped TiO2 nanofibers as potential photocatalyst and antimicrobial agent. J Ind Eng Chem. 2015 Jun;26:251-8.
Wu J, ZHANG G, Liu J, Gao H, Song C, DU H, et al. Synthesis, characteristics, and antibacterial activity of a rare-earth samarium/silver/titanium dioxide inorganic nanomaterials. J Rare Earths. The Chinese Society of Rare Earths. 2014 Aug;32(8):727-32.
Myilsamy M, Murugesan V, Mahalakshmi M. Indium and cerium co-doped mesoporous TiO2 nanocomposites with enhanced visible light photocatalytic activity. Appl Catal A Gen. Elsevier B.V. 2015 Feb;492:212-22.
Bokare A, Sanap A, Pai M, Sabharwal S, Athawale AA. Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation. Colloids Surf B Biointerfaces. 2013 Feb 1;102:273-80.
Eskandarloo H, Badiei A, Behnajady M, Ziarani GM. Ultrasonic-assisted sol-gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency. Ultrason Sonochem. Elsevier B.V. 2015;26:281-92.
Caro C, Gámez F, Sayagues MJ, Polvillo R, Royo JL. AgACTiO2 nanoparticles with microbiocide properties under visible light. Mater Res Express. IOP Publishing. 2015;2(5):055002.
Myilsamy M, Mahalakshmi M, Murugesan V, Subha N. Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2 nanocomposites for the degradation of 2,4-dinitrophenol under visible light. Appl Surf Sci. 2015 Jul;342:1-10.
Wang Y, Xue X, Yang H. Modification of the antibacterial activity of Zn/TiO2 nano-materials through different anions doped. Vacuum. 2014;101:193-9.
Wang Y, Yang H, Xue X. Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium. Vacuum. Elsevier Ltd. 2014;107:28-32.
Wang Y, Xue X, Yang H, Luan C. Preparation and characterization of Zn/Ce/SO42-doped titania nano-materials with antibacterial activity. Appl Surf Sci. 2014 Feb;292:608-14.
Tripathi AK, Mathpal MC, Kumar P, Singh MK, Soler MAG, Agarwal A, et al. Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. J Alloys Compd. 2015 Feb;622:37-47.
Yang H, Wang Y, Xue X. Influences of glycerol as an efficient doping agent on crystal structure and antibacterial activity of B-TiO2 nano-materials. Colloids Surfaces B Biointerfaces. Elsevier B.V. 2014;122:701-8.
Wang S, Yang XJ, Jiang Q, Lian JS. Enhanced optical absorption and photocatalytic activity of Cu/N-codoped TiO2 nanocrystals. Mater Sci Semicond Process. Elsevier. 2014;24:247-53.
Dashora A, Patel N, Kothari DC, Ahuja BL, Miotello A. Formation of an intermediate band in the energy gap of TiO2 by Cu-N-codoping: First principles study and experimental evidence. Sol Energy Mater Sol Cells. Elsevier. 2014;125:120-6.
Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari DC, Miotello A, et al. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl Catal B Environ. 2015 Jun;168-169:333-41.
Wu J, ZHANG G, Liu J, Gao H, Song C, DU H, et al. Synthesis, characteristics, and antibacterial activity of a rare-earth samarium/silver/titanium dioxide inorganic nanomaterials. J Rare Earths. The Chinese Society of Rare Earths. 2014 Aug;32(8):727-32.
Myilsamy M, Murugesan V, Mahalakshmi M. Indium and cerium co-doped mesoporous TiO2 nanocomposites with enhanced visible light photocatalytic activity. Appl Catal A Gen. Elsevier B.V. 2015 Feb;492:212-22.
Bokare A, Sanap A, Pai M, Sabharwal S, Athawale AA. Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation. Colloids Surf B Biointerfaces. 2013 Feb 1;102:273-80.
Eskandarloo H, Badiei A, Behnajady M, Ziarani GM. Ultrasonic-assisted sol-gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency. Ultrason Sonochem. Elsevier B.V. 2015;26:281-92.
Caro C, Gámez F, Sayagues MJ, Polvillo R, Royo JL. AgACTiO2 nanoparticles with microbiocide properties under visible light. Mater Res Express. IOP Publishing. 2015;2(5):055002.
Myilsamy M, Mahalakshmi M, Murugesan V, Subha N. Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2 nanocomposites for the degradation of 2,4-dinitrophenol under visible light. Appl Surf Sci. 2015 Jul;342:1-10.
Wang Y, Xue X, Yang H. Modification of the antibacterial activity of Zn/TiO2 nano-materials through different anions doped. Vacuum. 2014;101:193-9.
Wang Y, Yang H, Xue X. Synergistic antibacterial activity of TiO2 co-doped with zinc and yttrium. Vacuum. Elsevier Ltd. 2014;107:28-32.
Wang Y, Xue X, Yang H, Luan C. Preparation and characterization of Zn/Ce/SO42-doped titania nano-materials with antibacterial activity. Appl Surf Sci. 2014 Feb;292:608-14.
Tripathi AK, Mathpal MC, Kumar P, Singh MK, Soler MAG, Agarwal A, et al. Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. J Alloys Compd. 2015 Feb;622:37-47.
Yang H, Wang Y, Xue X. Influences of glycerol as an efficient doping agent on crystal structure and antibacterial activity of B-TiO2 nano-materials. Colloids Surfaces B Biointerfaces. Elsevier B.V. 2014;122:701-8.
Wang S, Yang XJ, Jiang Q, Lian JS. Enhanced optical absorption and photocatalytic activity of Cu/N-codoped TiO2 nanocrystals. Mater Sci Semicond Process. Elsevier. 2014;24:247-53.
Dashora A, Patel N, Kothari DC, Ahuja BL, Miotello A. Formation of an intermediate band in the energy gap of TiO2 by Cu-N-codoping: First principles study and experimental evidence. Sol Energy Mater Sol Cells. Elsevier. 2014;125:120-6.
Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari DC, Miotello A, et al. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl Catal B Environ. 2015 Jun;168-169:333-41.
Zhao YF, Li C, Lu S, Liu RX, Hu JY, Gong YY, et al. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO2: Experiment and simulation. J Solid State Chem. 2016 Mar;235:160-8.
Eskandarloo H, Badiei A, Behnajady MA, Ziarani GM. Ultrasonic-assisted sol-gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency. Ultrason Sonochem. 2015 Sep;26:281-92.
Mattsson A, Lejon C, Bakardjieva S, tengl V, Österlund L. Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles. J Solid State Chem. 2013 Mar;199:212-23.
Kaur T, Sraw A, Wanchoo RK, Toor AP. Visible -Light Induced Photocatalytic Degradation of Fungicide with Fe and Si Doped TiO2 Nanoparticles. Mater Today Proc. 2016;3(2):354-61