2016, Number 3
<< Back Next >>
Rev Cubana Invest Bioméd 2016; 35 (3)
Hydrocephalus and inflammation
Araya AP, Delgado-López F
Language: Spanish
References: 38
Page: 240-250
PDF size: 217.14 Kb.
ABSTRACT
Congenital hydrocephalus is characterized by obstruction of the aqueduct of Sylvius and abnormal neurogenesis. Evidence suggests the presence of an inflammatory response in both processes. In the central nervous system there are cells with an immune function, such as microglia, which keep permanent watch on their environment (inactive state), activating in the presence of any abnormal signal. According to their functions, active microglia may be either repairing or inflammatory. Repairing microglia have neuroprotective effects due to the secretion of anti-inflammatory molecules. Inflammatory microglia, on the other hand, secrete pro-inflammatory factors when activated, and thus the migration of more immune cells to the place. When this process is not regulated, a toxic microenvironment is generated for central nervous system cells, destabilizing the hematoencephalic barrier and thus permitting the mass arrival of macrophages and lymphocytes of peripheral origin to the brain. Generation of this neurotoxic environment causes serious damage to the anatomy and physiology of the central nervous system. The present review includes various studies based on human and animal models revealing the existence of inflammatory factors in the brain which develop either congenital or acquired hydrocephalus, and provides an analysis of the consequences and a potential therapy allowing to reverse the damage caused by such a response.
REFERENCES
Del Bigio MR. Neuropathological changes caused by hydrocephalus. Acta Neuropathol (Berl). 1993;85(6):573-85.
Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, et al. Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol. 2010;226(1):110-9.
Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(S1):S232-S40.
Ulfig N, Bohl J, Neudörfer F, Rezaie P. Brain macrophages and microglia in human fetal hydrocephalus. Brain Dev. 2004;26(5):307-15.
Domínguez Pinos MD, Páez P, Jiménez AJ, Weil B, Arráez MA, Rodríguez EM, et al. Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol. 2005;64(7):595-604.
Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. The Journal of clinical investigation. 2010;120(5):1368.
Ransohoff RM, Kivisäkk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nature Reviews Immunology. 2003;3(7):569-81.
Neumann H, Kotter M, Franklin R. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009;132(2):288-95.
Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9(7):917-24.
Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nature Reviews Neurology. 2010;6(4):193-201.
Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. The Journal of experimental medicine. 2005;201(4):647-57.
Ravichandran KS. "Recruitment signals" from apoptotic cells: invitation to a quiet meal. Cell. 2003;113(7):817-20.
Engelhardt B, Sorokin L. The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Seminars in immunopathology. Springer; 2009.
Neumann H, Wekerle H. Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol. 1998;57(1):1-13.
Sival DA, Felderhoff-Müser U, Schmitz T, Hoving EW, Schaller C, Heep A, et al. Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFN gamma in cerebrospinal fluid. Cerebrospinal Fluid Res. 2008;5:21.
Schmitz T, Heep A, Groenendaal F, Hüseman D, Kie S, Bartmann P, et al. Interleukin-1 beta, Interleukin-18, and Interferon gamma expression in the Cerebrospinal Fluid of Premature Infants with Posthemorrhagic Hydrocephalus_Markers of White Matter Damage? Pediatr Res. 2007;61(6):722-6.
Lu J, Kaur C, Ling E. An immunohistochemical study of the intraventricular macrophages in induced hydrocephalus in prenatal rats following a maternal injection of 6-aminonicotinamide. J Anat. 1996;188(Pt 2):491.
Khan OH, Enno TL, Del Bigio MR. Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol. 2006;200(2):311-20.
Shanku AG, Miller JM, McAllister JP. Progression and reversibility of gliosis due to hydrocephalus in the H-Tx rat. Cerebrospinal Fluid Research. 2005;2(Suppl 1):1.
Xu H, Zhang S, Tan G, Zhu H, Huang C, Zhang F, et al. Reactive gliosis and neuroinflammation in rats with communicating hydrocephalus. Neuroscience. 2012;218:317-25.
Perry VH, Newman TA, Cunningham C. The impact of systemic infection on the progression of neurodegenerative disease. Nature Reviews Neuroscience. 2003;4(2):103-12.
Kempermann G, Neumann H. Microglia: the enemy within? Science. 2003;302(5651):1689-90.
Jimenez A, Tome M, Paez P, Wagner C, Rodriguez S, Fernandez-Llebrez P, et al. A programmed ependymal denudation precedes congenital hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol. 2001;60(11):1105-19.
Rodríguez EM, Guerra MM, Vío K, González C, Ortloff A, Bátiz LF, et al. A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res. 2012;45(3):231-41.
Del Bigio MR, Bruni JE, Vriend JP. Monoamine neurotransmitters and their metabolites in the mature rabbit brain following induction of hydrocephalus. Neurochem Res. 1998;23(11):1379-86.
Ortloff A. Órgano subcomisural y neuroepitelio ventricular: Patogenia de la hidrocefalia congénita en la rata mutante Htx [Tesis Doctoral]: Universidad Austral de Chile; 2008.
Bátiz F. Etiopatogenia de la Hidrocefalia Congénita, Rol de alfa-SNAP y las uniones adherentes dependientes de N-cadherina en el denudamiento del neuroepitelio/epéndimo [Tesis doctoral]: Universidad Austral de Chile; 2008.
Oliver C, González CA, Alvial G, Flores CA, Rodríguez EM, Bátiz LF, et al. Disruption of CDH2/N-Cadherin-Based Adherens Junctions Leads to Apoptosis of Ependymal Cells and Denudation of Brain Ventricular Walls. J Neuropathol Exp Neurol. 2013;72(9):846-60.
Fadok VA, Bratton DL, Frasch SC, Warner ML, Henson PM. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998;5(7):551-62.
Jones H, Bucknall R. Inherited prenatal hydrocephalus in the h-tx rat: a morphological study. Neuropathol Appl Neurobiol. 1988;14(4):263-74.
Miller JM, Kumar R, McAllister J, Krause GS. Gene expression analysis of the development of congenital hydrocephalus in the H-Tx rat. Brain Res. 2006;1075(1):36-47.
Kohn D, Chinookoswong N, Chou S. A new model of congenital hydrocephalus in the rat. Acta Neuropathol (Berl). 1981;54(3):211-8.
Lichtin N. Estudio del mecanismo de disrupción de la zona ventricular y el destino de las células troncales neurales denudadas en el telencéfalo de la rata H-Tx hidrocefálica [Tesis de grado]: Universidad Austral de Chile; 2012.
Russo I, Barlati S, Bosetti F. Effects of neuroinflammation on the regenerative capacity of brain stem cells. J Neurochem. 2011;116(6):947-56.
Carty M, Bowie AG. Evaluating the role of Toll-like receptors in diseases of the central nervous system. Biochem Pharmacol. 2011;81(7):825-37.
Gonzalez Perez O, Gutierrez Fernandez F, Lopez Virgen V, Collas Aguilar J, Quinones Hinojosa A, Garcia Verdugo JM, et al. Immunological regulation of neurogenic niches in the adult brain. Neuroscience; 2012. p. 226-81.
Gutierrez Murgas Y, Snowden JN. Ventricular shunt infections: Immunopathogenesis and clinical management. J Neuroimmunol. 2014;276(1):1-8.
Araya P. Caracterización de los componentes inmunes asociados al proceso hidrocefálico en rata HTx [Tesis Magister]: Universidad Austral de Chile; 2014.