2017, Number 1
Next >>
TIP Rev Esp Cienc Quim Biol 2017; 20 (1)
Volumetric behavior of the DL-valine in aqueous solutions of sodium nitrate at different temperatures
Páez-Meza M, Ramos-Montiel J, De La Espriella-Vélez N
Language: Spanish
References: 41
Page: 5-15
PDF size: 336.85 Kb.
ABSTRACT
Densities of DL-valine (2-amino-3-methylbutanoic acid) in aqueous solutions of sodium nitrate were determined
at temperatures ranging from 283.15 to 318.15 K using an Anton Paar DMA 5000 vibrating tube densitometer.
The apparent molar volume, infinite dilution apparent molar volume, second derivative of the infinite dilution
partial molar volume with respect to temperature, partial molar volume of transfer at infinite dilution and
the number of hydration were calculated. The results obtained were discussed in terms of the dominant
interactions in solution, it was found that the DL-valine has a disruptor effect in the structure of the solvent
and that at infinite dilution solute-solvent interactions are dominant between isopropyl group the amino acid
and sodium and nitrate ions.
REFERENCES
Yan, Z., Wang, J., Zhang, H. & Xuan, X. Volumetric and Viscosity Properties of α-Amino Acids and Their Groups in Aqueous Sodium Caproate Solutions. J. Chem. Eng. Data 50, 1864–1870 (2005). DOI: 10.1021/je0501484
Kirkwood, J. G. Theoretical Studies upon Dipolar Ions. Chem. Rev.24, 233–251 (1939). DOI: 10.1021/cr60078a004
Hvidt, A. & Westh, P. Different Views on the Stability of Protein Conformations and Hydrophobic Effects. J. Solut. Chem.27, 395–402 (1998). DOI: 10.1023/A:1022696404041
Yan, Z., Wang, J., Kong, W. & Lu, J. Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equilibria 215, 143–150 (2004). DOI: 10.1016/j.fluid.2003.07.001
Dhondge, S. S., Zodape, S. P. & Parwate, D. V. Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn.48, 207–212 (2012). DOI: 10.1016/j.jct.2011.12.022
Schrier, M. Y., Ying, A. H. C., Ross, M. E. & Schrier, E. E. Free energy changes and structural consequences for the transfer of urea from water and ribonuclease A from dilute buffer to aqueous salt solutions. J. Phys. Chem. 81, 674–679 (1977). DOI: 10.1021/j100522a018
Lapanje, S., Škerjanc, J., Glavnik, S. & Žibret, S. Thermodynamic studies of the interactions of guanidinium chloride and urea with some oligoglycines and oligoleucines. J. Chem. Thermodyn. 10, 425–433 (1978). DOI: 10.1016/0021-9614(78)90089-7
Mishra, A. K. & Ahluwalia, J. C. Apparent molal volumes of amino acids, N-acetylamino acids, and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984). DOI: 10.1021/ j150645a021
Bhat, R. & Ahluwalia, J. C. Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985). DOI: 10.1021/ j100253a011
Singh, S. K. & Kishore, N. Partial Molar Volumes of Amino Acids and Peptides in Aqueous Salt Solutions at 25°C and a Correlation with Stability of Proteins in the Presence of Salts. J. Solut. Chem. 32, 117–135 (2003). DOI: 10.1023/A:1022946105467
Banipal, T. S. & Singh, G. Thermodynamic study of solvation of some amino acids, diglycine and lysozyme in aqueous and mixed aqueous solutions. Thermochim. Acta 412, 63–83 (2004). DOI: 10.1016/j.tca.2003.08.026
Pal, A. & Chauhan, N. Volumetric, viscometric, and acoustic behaviour of diglycine in aqueous saccharide solutions at different temperatures. J. Mol. Liq. 149, 29–36 (2009). DOI: 10.1016/j.molliq.2009.07.014
Enea, O. & Jolicoeur, C. Heat capacities and volumes of several oligopeptides in urea-water mixtures at 25.degree.C. Some implications for protein unfolding. J. Phys. Chem. 86, 3870–3881 (1982). DOI: 10.1021/j100216a033
Rajagopal, K. & Jayabalakrishnan, S. S. Effect of Temperature on Volumetric and Viscometric Properties of Homologous Amino Acids in Aqueous Solutions of Metformin Hydrochloride. Chin. J. Chem. Eng.18, 425–445 (2010). DOI: 10.1016/S1004-9541(10)60241-8
Banipal, T. S., Kaur, J. & Banipal, P. K. Interactions of some amino acids with aqueous manganese chloride tetrahydrate at T = (288.15 to 318.15) K: A volumetric and viscometric approach. J. Chem. Thermodyn. 48, 181–189 (2012). DOI: 10.1016/j.jct.2011.12.012
Yan, Z., Wang, J., Liu, W. & Lu, J. Apparent molar volumes and viscosity B-coefficients of some α-amino acids in aqueous solutions from 278.15 to 308.15 K. Thermochim. Acta 334, 17–27 (1999). DOI: 10.1016/ S0040-6031(99)00107-0
Kell, G. S. Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg.. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20, 97–105 (1975). DOI: 10.1021/je60064a005
Riddick, J. & Bunger, W. Organic Solvents (Techniques of chemistry). II, (Wiley-Interscience, 1970).
Yang, J.-Z., Lu, X.-M., Gui, J.-S., Xu, W.-G. & Li, H.-W. Volumetric properties of room temperature ionic liquid 2: The concentrated aqueous solutions of {1-methyl-3- ethylimidazolium ethyl sulfate + water} in a temperature range of 278.2 K to 338.2 K. J. Chem. Thermodyn. 37, 1250–1255 (2005). DOI: 10.1016/j.jct.2005.03.002
F.R.S, S. D. O. M. K. B. E. XXVIII. Solute molecular volumes in relation to solvation and ionization. Lond. Edinb. Dublin Philos. Mag. J. Sci. 8, 218–235 (1929). DOI: 10.1080/14786440808564880
Franks, F. & Smith, H. T. Apparent molal volumes and expansibilities of electrolytes in dilute aqueous solution. Trans. Faraday Soc. 63, 2586–2598 (1967). DOI: 10.1039/ TF9676302586
Shekaari, H. & Jebali, F. Densities and electrical conductances of amino acids + ionic liquid ([HMIm]Br) + H2O mixtures at 298.15 K. Fluid Phase Equilibria 295, 68–75 (2010). DOI: 10.1016/j.fluid.2010.04.002
Samanta, T. & Saharay, S. K. Volumetric and viscometric studies of glucose in binary aqueous solutions of urea at different temperatures. J. Chem. Thermodyn. 42, 1131–1135 (2010). DOI: 10.1016/j.jct.2010.04.012
Hepler, L. G. Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969). DOI: 10.1139/v69-762
Frank, H. S. & Evans, M. W. Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes. J. Chem. Phys. 13, 507–532 (1945). DOI: 10.1063/1.1723985
Ali, A. & Shahjahan. Volumetric, viscometric and refractive index behavior of some α-amino acids in aqueous tetrapropylammonium bromide at different temperatures. J. Iran. Chem. Soc. 3, 340–350 (2006). DOI: 10.1007/ BF03245957
Pal, A. & Chauhan, N. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures. J. Chem. Thermodyn. 43, 140–146 (2011). DOI: 10.1016/j.jct.2010.08.004
Belibaĝli, K.B. & Ayranci, E. Viscosities and apparent molar volumes of some amino acids in water and in 6M guanidine hydrochloride at 25°C. J. Solut. Chem. 19, 867–882 (1990). DOI: 10.1007/BF00653072
Liu, C., Zhou, L. & Lin, R. Volumetric Properties of Amino Acids in Aqueous N-methylacetamide Solutions at 298.15 K. J. Solut. Chem. 39, 1253–1263 (2010). DOI: 10.1007/ s10953-010-9585-y
Singh, M., Pandey, M., Yadav, R. K. & Verma, H. S. Thermodynamic studies of molar volume, pair and triplet interactions at increasing side-chain length of α-amino acids in aqueous potassium chloride solutions at different concentration and 310.15 K. J. Mol. Liq. 135, 188–191 (2007). DOI: 10.1016/j.molliq.2006.12.029
Shahidi, F., Farrell, P. G. & Edward, J. T. Partial molar volumes of organic compounds in water. III. Carbohydrates. J. Solut. Chem. 5, 807–816 (1976). DOI: 10.1007/ BF01167236
Millero, F. J., Lo Surdo, A. & Shin, C. The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25.degree.C. J. Phys. Chem. 82, 784–792 (1978). DOI: 10.1021/j100496a007
Wang, X., Li, G., Guo, Y., Zheng, Q., Fang, W., Bian, P. & Zhang, L. Interactions of amino acids with aqueous solutions of hydroxypropyl-β-cyclodextrin at different temperatures: A volumetric and viscometric approach. J. Chem. Thermodyn. 78, 128–133 (2014). DOI: 10.1016/j. jct.2014.06.016
Pal, A. & Kumar, S. Volumetric and ultrasonic studies of some amino acids in binary aqueous solutions of MgCl2·6H2O at 298.15 K. J. Mol. Liq. 121, 148–155 (2005). DOI: 10.1016/j.molliq.2004.12.003
Páez, M. S., Alvis, A. & Arrazola, G. Propiedades Volumétricas de Trifluorometanosulfonato de 1-etil-3- metilimidazolio en Solución acuosa de Tiosulfato de Sodio Pentahidratado a Diferentes Temperaturas. Inf. Tecnológica 26, 105–112 (2015). DOI: 10.4067/S0718- 07642015000500014
Páez, F. A., Páez, M. S. & Lamadrid, A. P. Interactions of glycine in aqueous solutions of 1-butyl-3- methylimidazolium tetrafluoroborate at different temperatures. Quím. Nova 37, 418–425 (2014). DOI: 10.5935/0100-4042.20140078
Páez, M. S., Vergara, M. K. & Pérez, O. A. Propiedades Volumétricas de la DL-Alanina en Soluciones Acuosas del Líquido Iónico Cloruro de 1 -Butil-3-Metilimidazolio a las Temperaturas desde 283.15 hasta 313.15 K. Inf. Tecnológica 26, 113–120 (2015). DOI: 10.4067/S0718- 07642015000500015
Tomé, L., Domínguez, M., Claudio, A., Freire, M., Marrucho, I., Cabeza, O. & Coutinho, J. On the Interactions between Amino Acids and Ionic Liquids in Aqueous Media. J. Phys. Chem. B113, 13971–13979 (2009). DOI: 10.1021/ jp906481m
Banerjee, T. & Kishore, N. Interactions of Some Amino Acids with Aqueous Tetraethylammonium Bromide at 298.15 K: A Volumetric Approach. J. Solut. Chem. 34, 137–153 (2005). DOI: 10.1007/s10953-005-2746-8
Singh, S. K., Kundu, A. & Kishore, N. Interactions of some amino acids and glycine peptides with aqueous sodium dodecyl sulfate and cetyltrimethylammonium bromide at T=298.15 K: a volumetric approach. J. Chem. Thermodyn. 36, 7–16 (2004). DOI: 10.1016/j.jct.2003.09.010
Banipal, T. S., Kaur, J., Banipal, P. K. & Singh, K. Study of Interactions between Amino Acids and Zinc Chloride in Aqueous Solutions through Volumetric Measurements at T = (288.15 to 318.15) K. J. Chem. Eng. Data 53, 1803–1816 (2008). DOI: 10.1021/je8001464