2016, Number 3
Next >>
Rev Mex Neuroci 2016; 17 (3)
Mathematical model of neuronal functional relationship, based on microstructure
Pando-Orellana LA, Cabrera MML, Díaz CS, Valencia MP, Chiquete E
Language: Spanish
References: 39
Page: 3-16
PDF size: 1605.79 Kb.
ABSTRACT
Introduction. From studies of Ramón y Cajal
to the most modern techniques for the study of
the neuronal microstructure, it is evidenced that
the organization of the neuronal cytoarchitecture
corresponds to a potentially predictable spacetime
order.
Objective: To determine if there is a correlation
between the anatomical arrangements of neurons
in the human primary visual cortex with the vector
distribution inferred in a mathematical model
described previously.
Methods: From 10 postmortem studies of
pediatric patients who died from diseases that
would not distort the normal architecture of
the brain, equal fragments were taken from the
right and left occipital cortex at the level of the
calcarine fissure. The preparations were observed
in an optical planar apochromatic microscope.
Measurements were carried-out on the soma
size, length of the apical dendrite, density of basal
branches, density of dendritic spines in three
segments of 50 µm in the apical basal dendrites,
length of the dendrite spine and head diameter,
and diameter of apical and basal dendrites. These
measures allowed to calculate the actual number
of spines on each segment of 50 µm.
Results: The size of the soma, length of the apical
dendrite and density of basal dendrites increase
between 7 days to 14 years of age (p‹0.01).
The density of spines (sp) in the apical dendrite
presents significant changes in their pattern of
distribution along the apical dendrite, with greater
density in medial (1.14 sp/µm) and terminal (1.13
sp/µm) segments. The spines density in the 3 basal
segments studied presented significant increases
in children aged 7 days in an average of 1.5 sp/
µm, in relation to 15-months old (0.63 sp/µm) and
to 14-years old (0.58 sp/µm). The comparison
between thorns density measured at 150 sp/µm of
the apical dendrite compared with baseline showed
significant reductions of 59% at age 14 years and
31% at age 15 months. However, at an age of 7
days it is found a significant increase of a mean
29%. With this information a mathematical model
is proposed that explains the correlation between
the morphostructure of the primary visual cortex
with its function, as a paradigm of study of the socalled
higher cortical functions.
Conclusion. Since the neural connections in the
cerebral cortex of humans are morphologically
distributed in a convergent/divergent manner, then
cortical integration can be analyzed by the study of
neuronal vector fields.
REFERENCES
Desimone R. The role of attention in modulating visual processing in extrastriate cortex of the macaque, En: E. Martínez-Uriegas (Ed.), The Cuernavaca workshop on vision. UNAM, Cuernavaca, 1987. pp. 35-36
Gilbert CH. Mechanisms of processing in primary visual cortex. En: E. Martínez-Uriegas (Ed.), The Cuernavaca workshop on vision. UNAM, Cuernavaca, 1987. pp. 3-4.
Klein S. Sillabus for Cuernavaca Workshop on vision. En: E. Martínez-Uriegas (Ed.), The Cuernavaca workshop on vision. UNAM, Cuernavaca, 1987. pp. 23-24
Livingstone M. Segregation of form, color, movement and depth processing: Anatomy, physiology, psychophysics, art and illusion. En: E. Cuernavaca, 1987. pp. 11-13.
Matsubara JA, Cynadem MS, Swindale NV. Anatomical properties and physiological correlates of the intrinsic connections in cat area 18. The Journal of Neuroscience. 1987; 7: 1428-1446.
Peters A, Kara DA. The neuronal composition of area 17 of rat visual cortex. II. The nonpyramidal cells. The Journal of Comparative Neurology 1985; 234: 242-263.
Peters A, Kara DA. The neuronal composition of area 17 of rat visual cortex. IV. The organization of pyramidal cells. The Journal of Comparative Neurology 1987; 260: 573-590.
Peters A, Walsh M. Study of the organization of apical dendrites in the “somatic” sensory cortex of the rat. Com Neur 144: 253-368.
Phillipson OT, Klpatrick IC, Jones MW. Dopaminergic innervation of the primary visual cortex in the rat and some correlations with human cortex. Brain Research Bulletin 1987; 18: 621-633.
Schiller PH. The on and off channels of the visual system. En: E. Martínez-Uriegas (Ed.), The Cuernavaca workshop on vision. UNAM, Cuernavaca, 1987. pp. 26.
Wilson JCH. Passive cable properties of dendritic spines and spiny neurons. The Journal of Neuroscience 1984; 4: 281-297.
Freedman AM, Kaplan HI: Modern Synopsis of Psychiatry. Williams & Wilkins, Baltimore, 1984.
Babloyantz A. Self-organization phenomena resulting from cell-cell contact. J Theor Biol 1977; 68: 551-561.
Bergen JR. Early extraction of motion and texture information in human and machine vision. En: E. Martínez-Uriegas (Ed.), The Cuernavaca workshop on vision. UNAM, Cuernavaca, 1987. pp. 38-39.
Colonnier M. The tangential organization of the visual cortex. J Anat Lond 1964; 98: 327-344.
Feldman RJ, Bryan SD. Steps toward a system for processing biological images. En: (Ed.), Processing biological images. pp. 409-426.
Fischer H. Photons as transmitter for intra-and intercellular biological and biochemical communication. The construction of a Hypotesis. En: F. A. Popp, G. Becker, H. Konig y W. Peschka (Eds.), Electromagnetic bio-information. Urgan & Schawarzenberg, Munich, Viena, Baltimo, 1979. pp. 175-180.
Marroquin JL. A probabilistic approach to computational visión. En: E. Martínez-Uriegas (Ed.), The Cuernavaca workshop on vision. UNAM, Cuernavaca, 1987. pp. 25.
Pentland AP. Recovering 3-D description of snape using massively parallel networks. En: E. Martínez-Uriegas (Ed.), The Cuernavaca workshop on vision. UNAM, Cuernavaca, 1987. pp. 10.
Popp FA. Einige moolichkeiten fur biosingnale fur mteuerung des zellwachstums. Arch Geschwulstforschung 1974; 44: 295.
Popp FA, Ruth B. Untersucnungen zur ultraschwaschen lumineszenz aus biologischen systemen unter berucksichtgung del bedeutung fur die arzneimittelforschun. Arzeimittel Forsch 1977; 27: 933.
Popp FA, Schaumloffel P, Bohm K, Herrmann J, Kramer J. Biosignale zur steuerung des zellstoffwechsels. Eine Resonanzhypothese der karzinogenese. Munch med Wschr 1974; 116: 381- 384.
Presman AS. Electromagnetic fields and life. Plenum Press, Lonon, New York, 1970.
Rajewski B. Zur Frage des physikalischen nacnweises del gurwitsch strahlung (sogenannte mitogenetische strahlung). En: F. Dessauer (Ed.) Zehn jahre forschung auf dem medizinisch physikalischen grenzgeblet. Thieme Varlag, Stuttgart, 1931.
Ruth B, Popp FA. Experimentelle untersuchungen zur ultraschwachen photonemission biologscher systeme. Z Naturforsch 1976; 31c: 741.
Streitwieser, A. Molecular orbital theory for organic chemist, John Wiley & Sons. New York. 1961.
Sung SS. A possible biophotochemical mechanism for cell communication. En Popp FA, Becker G, Koning HL, Peschka W (Eds.), Electromagnetic bio-information. Urban & Schwarzenberg, Munich, Viena, Baltimo 1979. pp. 151-174.
Bedi KS, Tomas YM, Davies CA, Dobbing J. Synapse to neuron ratios of the frontal and cerebellar cortex of 30 day old and adult rats undernourished during early postnatal life. The Journal of Comparative Neurology 1980; 193: 49-56.
Braak E, Heiko B. On three types of large nerve cells in the granular layer of the human cerebellar cortex. Anat Embryol 1983; 166: 67-86.
Gabbot PLA, Samogyi P. Quantitative distribution of GABA-inmunoreactive neurons in the visual cortex (area 17) of the cat. Exp. Brain Res 1986; 61: 323-331.
Gersch M. Informationsubermittlung mit hilfe neurosekretorischer peptide als ediatoren, Naturwissench 1977; 64: 417-426.
Hildebrand JG, Kravitz EA. Transmitter biochemistry of single, identified neurons. En: L. i.p.m.a.n. sympsosium (Ed.), Energy, regulation and biosynthesis in molecular biology. Verlag de Gruyter & Co. Berlin, 1974. pp. 293-307.
Kumaki K, Hara SI, Mizuno S, Tomioka S. Relation between the hydroxylated position of aromatic compounds by monoxygenases and various electronic reactivity indexas Chem Pharm Bull 1969; 17: 1571.
Kiloh LE. Clinical Electroenceph. Third edith. Butler worths. GB. 1987.
White JD, Perkins DS, Taylor SI. Biosynthesis of Ergosta 4, 6, 8 (14), 22-tetraen-3 one, a novel oxygenative pathway. Bioorg Chem 1973; 2: 163.
Schrodinger E. Space-time structure, Cambridge University Press, Cambridge, 1985.
Freedman AM, Kaplan H. Modern Synopsis of Psych. Williams & Wilkin Baltimore 1980.
Matthew Kabrisky. A proposed model for visual information processing in the human brain. University of Illinois Press, Urbana and Lonon, 1986.
Mallory FB: Pathological Technique. Special Organs. WB. Saunders Co. Philadelphia, 1938, p 219.