2016, Number S2
<< Back Next >>
Gac Med Mex 2016; 152 (S2)
Comparative Study of the Efficacy of Larva Therapy for Debridement and Control of Bacterial Burden Compared to Surgical Debridement and Topical Application of an Antimicrobial
Contreras-Ruiz J, Fuentes-Suárez A, Arroyo-Escalante S, Moncada-Barron D, Sosa-de-Martínez MC, Maravilla-Franco E, Domínguez-Cherit JG
Language: Spanish
References: 99
Page: 78-87
PDF size: 198.95 Kb.
ABSTRACT
Maggot debridement therapy (MDT) is the use of medical grade maggots of the fly Lucilia sericata for wound debridement.
Recent observations show that MDT decreases bacterial burden as well. Venous ulcers are the most commonly seen in
wound clinics and require, besides adequate treatment of venous hypertension, proper wound bed preparation with debridement of necrotic tissue and control of potential infections. To evaluate the efficacy of MDT in venous ulcers a randomized
controlled trial was designed to compare MDT to surgical debridement and topical application of silver sulfadiazine (SSD)
in 19 patients for 4 weeks. The study variables were area reduction, wound bed characteristics, pain, odor, anxiety and bacterial
burden using quantitative tissue biopsies. MDT was effective as surgical debridement associated with topical SDD in
the debridement of the wound and in reducing its size. A significant difference was observed in the reduction of bacterial
burden in favor of the MDT group. Odor and anxiety increased in the MDT group without any difference in the pain intensity
between groups. In conclusion, this study suggests that MDT is as effective as surgical debridement for the debridement
of necrotic tissue and promote wound healing in venous ulcers and better at reducing bacterial burden.
REFERENCES
Asociación Mexicana para el Cuidado Integral y Cicatrización de Heridas. Clinical practice guideline for the treatment of acute and chronic wounds with maggot therapy. Mexico: Asociación Mexicana para el Cuidado Integral y Cicatrización de Heridas A.C.; 2010:43.
Jones M, Thomas S. Larval therapy. Nurs Stand. 2000;14:47-51; quiz 53.
Mumcuoglu KY. Maggot debridement therapy. Plast Reconstr Surg. 2007;120:1738-9; author reply 1739.
Pechter EA, Sherman RA. Maggot therapy: the surgical metamorphosis. Plast Reconstr Surg. 1983;72:567-70.
Sherman RA, Hall MJ, Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol. 2000;45:55-81.
Pare A. The apologie and treatise of Ambroise Paré. New York: Dover; 1968:227.
Sokolov M, Kiyakovsky F. On typhus and fever in the former Southern Army in the end of 1855 and the beginning of 1856. St. Petersburg: 1857.
Baer WS. The classic: the treatment of chronic osteomyelitis with the maggot (larva of the blow fly). 1931. Clin Orthop Relat Res. 2011;469: 920-44.
Shinkman R. Worms and squirms. Maggots, leeches are making a comeback in modern medicine. Mod Healthc. 2000;30:54-5.
Contreras-Ruiz J. Maggot debridement therapy in Mexico. Wound Care Canada. 2005;3:42-6.
Davydov L. Maggot therapy in wound management in modern era and a review of published literature. J Pharm Pract. 2011;24:89-93.
Harris LG, Nigam Y, Sawyer J, Mack D, Pritchard DI. Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Appl Environ Microbiol. 2013;79:1393-5.
Honda K, Okamoto K, Mochida Y, et al. A novel mechanism in maggot debridement therapy: protease in excretion/secretion promotes hepatocyte growth factor production. Am J Physiol Cell Physiol. 2011;301: C1423-30.
Telford G, Brown AP, Kind A, English JS, Pritchard DI. Maggot chymotrypsin I from Lucilia sericata is resistant to endogenous wound protease inhibitors. Br J Dermatol. 2011;164:192-6.
Telford G, Brown AP, Rich A, English JS, Pritchard DI. Wound debridement potential of glycosidases of the wound-healing maggot, Lucilia sericata. Med Vet Entomol. 2012;26:291-9.
Tellez GA, Acero MA, Pineda LA, Castano JC. [Effect of maggot therapy on minimally necrotic tissues: characterization of larval enzymatic excretion/ secretion]. Biomedica. 2012;32:312-20.
Cazander G, Pritchard DI, Nigam Y, Jung W, Nibbering PH. Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. Bioessays. 2013;35:1083-92.
Cerovsky V, Zdarek J, Fucik V, Monincova L, Voburka Z, Bem R. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci. 2010;67:455-66.
Poppel AK, Koch A, Kogel KH, et al. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol Chem. 2014;395:649-56.
Poppel AK, Vogel H, Wiesner J, Vilcinskas A. Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob Agents Chemother. 2015;59:2508-14
Valachova I, Bohova J, Palosova Z, Takac P, Kozanek M, Majtan J. Expression of lucifensin in Lucilia sericata medicinal maggots in infected environments. Cell Tissue Res. 2013;353:165-71.
Valachova I, Prochazka E, Bohova J, Novak P, Takac P, Majtan J. Antibacterial properties of lucifensin in Lucilia sericata maggots after septic injury. Asian Pac J Trop Biomed. 2014;4:358-61.
Valachova I, Takac P, Majtan J. Midgut lysozymes of Lucilia sericata - new antimicrobials involved in maggot debridement therapy. Insect Mol Biol. 2014;23:779-87.
Courtenay M, Church JC, Ryan TJ. Larva therapy in wound management. J R Soc Med. 2000;93:72-4.
Bohova J, Majtan J, Majtan V, Takac P. Selective antibiofilm effects of Lucilia sericata larvae secretions/excretions against wound pathogens. Evid Based Complement Alternat Med. 2014;2014:857360.
Cazander G, van Veen KE, Bouwman LH, Bernards AT, Jukema GN. The influence of maggot excretions on PAO1 biofilm formation on different biomaterials. Clin Orthop Relat Res. 2009;467:536-45.
Cazander G, van de Veerdonk MC, Vandenbroucke-Grauls CM, Schreurs MW, Jukema GN. Maggot excretions inhibit biofilm formation on biomaterials. Clin Orthop Relat Res. 2010;468:2789-96.
Harris LG, Bexfield A, Nigam Y, Rohde H, Ratcliffe NA, Mack D. Disruption of Staphylococcus epidermidis biofilms by medicinal maggot Lucilia sericata excretions/secretions. Int J Artif Organs. 2009;32:555-64.
Jiang KC, Sun XJ, Wang W, et al. Excretions/secretions from bacteria- pretreated maggot are more effective against Pseudomonas aeruginosa biofilms. PLoS One. 2012;7:e49815.
van der Plas MJ, Jukema GN, Wai SW, et al. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother. 2008;61: 117-22.
van der Plas MJ, Dambrot C, Dogterom-Ballering HC, Kruithof S, van Dissel JT, Nibbering PH. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother. 2010;65:917-23.
Bonn D. Maggot therapy: an alternative for wound infection. Lancet. 2000;356:1174.
Mumcuoglu KY. Clinical applications for maggots in wound care. Am J Clin Dermatol. 2001;2:219-27.
Dumville JC, Worthy G, Bland JM, et al. Larval therapy for leg ulcers (VenUS II): randomised controlled trial. BMJ. 2009;338:b773.
Dumville JC, Worthy G, Soares MO, et al. VenUS II: a randomised controlled trial of larval therapy in the management of leg ulcers. Health Technol Assess. 2009;13:1-182, iii.
Mudge E, Price P, Walkley N, Harding KG. A randomized controlled trial of larval therapy for the debridement of leg ulcers: results of a multicenter, randomized, controlled, open, observer blind, parallel group study. Wound Repair Regen. 2014;22:43-51.
Soares MO, Iglesias CP, Bland JM, et al. Cost effectiveness analysis of larval therapy for leg ulcers. BMJ. 2009;338:b825.
Contreras-Ruiz J, Escotto-Sanchez I, Cobo-Morales JF. Úlceras venosas. En: Contreras-Ruiz J, editor. Abordaje y manejo de las heridas. México: Intersistemas Editores; 2013. p. 271-95.
Engelhardt M, Spech E, Diener H, Faller H, Augustin M, Debus ES. Validation of the disease-specific quality of life Wuerzburg Wound Score in patients with chronic leg ulcer. Vasa. 2014;43:372-9.
Price PE, Fagervik-Morton H, Mudge EJ, et al. Dressing-related pain in patients with chronic wounds: an international patient perspective. Int Wound J. 2008;5:159-71.
Salome GM, Openheimer DG, de Almeida SA, Bueno ML, Dutra RA, Ferreira LM. Feelings of powerlessness in patients with venous leg ulcers. J Wound Care. 2013;22:628, 630, 632-628, 630, 634.
O’Donnell TFJ, Passman MA, Marston WA, et al. Management of venous leg ulcers: clinical practice guidelines of the Society for Vascular Surgery (R) and the American Venous Forum. J Vasc Surg. 2014;60:3S-59S.
Tang JC, Marston WA, Kirsner RS. Wound Healing Society (WHS) venous ulcer treatment guidelines: what’s new in five years? Wound Repair Regen. 2012;20:619-37.
Sosa-de-Martinez MC, Pablos-Hach JL, Santos-Atherton D. Guía para elaborar el protocolo de investigación. Parte 2. Clasificación del protocolo de investigación. Acta Ped Mex. 1994;15:139-45.
Sherman RA. Maggot debridement therapy for treating non-healing wounds. Wound Repair Regen. 2000;8:327.
Cañedo LD, García RH, Méndez RI. Principios de investigación médica. México: Ediciones DIF; 1977. p. 399.
Sherman RA, Tran JM, Sullivan R. Maggot therapy for venous stasis ulcers. Arch Dermatol. 1996;132:254-6.
Sherman RA. A new dressing design for use with maggot therapy. Plast Reconstr Surg. 1997;100:451-6.
Feinstein AR. An additional basic science for clinical medicine: IV. The development of clinimetrics. Ann Intern Med. 1983;99:843-8.
Freeman K, Smyth C, Dallam L, Jackson B. Pain measurement scales: a comparison of the visual analogue and faces rating scales in measuring pressure ulcer pain. J Wound Ostomy Continence Nurs. 2001;28:290-6.
Marx RG, Bombardier C, Hogg-Johnson S, Wright JG. Clinimetric and psychometric strategies for development of a health measurement scale. J Clin Epidemiol. 1999;52:105-1.
Sucker K, Both R, Bischoff M, Guski R, Winneke G. Odor frequency and odor annoyance. Part I: assessment of frequency, intensity and hedonic tone of environmental odors in the field. Int Arch Occup Environ Health. 2008;81:671-82.
Kantor J, Margolis DJ. Efficacy and prognostic value of simple wound measurements. Arch Dermatol. 1998;134:1571-4.
Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen. 2000;8:347-52.
Bharadwaj R, Joshi BN, Phadke SA. Assessment of burn wound sepsis by swab, full thickness biopsy culture and blood culture - a comparative study. Burns Incl Therm Inj. 1983;10:124-6.
Loebl EC, Marvin JA, Heck EL, Curreri PW, Baxter CR. The method of quantitative burn-wound biopsy cultures and its routine use in the care of the burned patient. Am J Clin Pathol. 1974;61:20-4.
Sapico FL, Canawati HN, Witte JL, Montgomerie JZ, Wagner FWJ, Bessman AN. Quantitative aerobic and anaerobic bacteriology of infected diabetic feet. J Clin Microbiol. 1980;12:413-20.
Murray F, Benbow M. Diabetic foot ulcer associated with Wegener’s granulomatosis. J Wound Care. 1999;8:377-8.
Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14:244-69.
Steer JA, Papini RP, Wilson AP, McGrouther DA, Parkhouse N. Quantitative microbiology in the management of burn patients. I. Correlation between quantitative and qualitative burn wound biopsy culture and surface alginate swab culture. Burns. 1996;22:173-6.
Lipsky BA, Berendt AR, Cornia PB, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. J Am Podiatr Med Assoc. 2013;103:2-7.
Dow G, Browne A, Sibbald RG. Infection in chronic wounds: controversies in diagnosis and treatment. Ostomy Wound Manage. 1999;45:23-7, 29.
Markevich YO, McLeod-Roberts J, Mousley M, Melloy E. Maggot therapy for diabetic neuropathic foot wounds: a randomized study. En: Proceedings of the 36th Annual Meeting of the European Association for the Study of Diabetes. Jerusalem, Israel; 2000.
Opletalova K, Blaizot X, Mourgeon B, et al. Maggot therapy for wound debridement: a randomized multicenter trial. Arch Dermatol. 2012;148:432-8.
Sherman RA, Wyle F, Vulpe M. Maggot therapy for treating pressure ulcers in spinal cord injury patients. J Spinal Cord Med. 1995;18:71-4.
Sherman RA, Shimoda KJ. Presurgical maggot debridement of soft tissue wounds is associated with decreased rates of postoperative infection. Clin Infect Dis. 2004;39:1067-70.
Paul AG, Ahmad NW, Lee HL, et al. Maggot debridement therapy with Lucilia cuprina: a comparison with conventional debridement in diabetic foot ulcers. Int Wound J. 2009;6:39-46.
Rabe E, Guex JJ, Puskas A, Scuderi A, Fernandez Quesada F. Epidemiology of chronic venous disorders in geographically diverse populations: results from the Vein Consult Program. Int Angiol. 2012;31:105-15.
Contreras-Ruiz J. Abordaje y manejo de las heridas. México: Intersistemas Editores; 2013. p. 395.
Gottrup F, Jorgensen B. Maggot debridement: an alternative method for debridement. Eplasty. 2011;11:e33.
Wollina U, Liebold K, Schmidt WD, Hartmann M, Fassler D. Biosurgery supports granulation and debridement in chronic wounds - clinical data and remittance spectroscopy measurement. Int J Dermatol. 2002;41: 635-9.
Davies C, Woolfrey G, Hogg N, et al. Maggots as a wound debridement agent for chronic venous leg ulcers under graduated compression bandages: a randomised controlled trial. Phlebology. 2015;30:693-9.
Shi E, Shofler D. Maggot debridement therapy: a systematic review. Br J Community Nurs. 2014;19(Suppl 12):S6-S13.
McInnes W, Ruzehaji N, Wright N, Cowin AJ, Fitridge R. Venous ulceration contaminated by multi-resistant organisms: larval therapy and debridement. J Wound Care. 2013;22:S27-S30.
Margolis DJ, Berlin JA, Strom BL. Risk factors associated with the failure of a venous leg ulcer to heal. Arch Dermatol. 1999;135:920-6.
Margolis DJ, Berlin JA, Strom BL. Which venous leg ulcers will heal with limb compression bandages? Am J Med. 2000;109:15-9.
Kantor J, Margolis DJ. A multicentre study of percentage change in venous leg ulcer area as a prognostic index of healing at 24 weeks. Br J Dermatol. 2000;142:960-4.
Gelfand JM, Hoffstad O, Margolis DJ. Surrogate endpoints for the treatment of venous leg ulcers. J Invest Dermatol. 2002;119:1420-5.
Margolis DJ, Allen-Taylor L, Hoffstad O, Berlin JA. The accuracy of venous leg ulcer prognostic models in a wound care system. Wound Repair Regen. 2004;12:163-8.
Edwards J, Stapley S. Debridement of diabetic foot ulcers. Cochrane Database Syst Rev. 2010;(1):CD003556.
Sun X, Jiang K, Chen J, et al. A systematic review of maggot debridement therapy for chronically infected wounds and ulcers. Int J Infect Dis. 2014;25:32-7.
Zarchi K, Jemec GB. The efficacy of maggot debridement therapy - a review of comparative clinical trials. Int Wound J. 2012;9:469-77.
Wound exudate and the role of dressings. A consensus document. Int Wound J. 2008;5(Suppl 1):iii-i12.
Kitching M. Patients’ perceptions and experiences of larval therapy. J Wound Care. 2004;13:25-9.
Sherman RA, Sherman J, Gilead L, Lipo M, Mumcuoglu KY. Maggot debridement therapy in outpatients. Arch Phys Med Rehabil. 2001;82:1226-9.
Spilsbury K, Cullum N, Dumville J, O’Meara S, Petherick E, Thompson C. Exploring patient perceptions of larval therapy as a potential treatment for venous leg ulceration. Health Expect. 2008;11:148-59.
Steenvoorde P, Buddingh TJ, van Engeland A, Oskam J. Maggot therapy and the “yuk” factor: an issue for the patient? [letter]. Wound Repair Regen. 2005;13:350-2.
Evans P. Larvae therapy and venous leg ulcers: reducing the ‘yuk factor’. J Wound Care. 2002;11:407-8.
Britland S, Smith A, Finter W, et al. Recombinant Lucilia sericata chymotrypsin in a topical hydrogel formulation degrades human wound eschar ex vivo. Biotechnol Prog. 2011;27:870-4.
Horobin AJ, Shakesheff KM, Pritchard DI. Promotion of human dermal fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions. J Invest Dermatol. 2006;126:1410-8.
Mumcuoglu KY, Davidson E, Avidan A, Gilead L. Pain related to maggot debridement therapy. J Wound Care. 2012;21:400, 402, 404, 405.
Steenvoorde P, Budding T, Oskam J. Determining pain levels in patients treated with maggot debridement therapy. J Wound Care. 2005;14:485-8.
Stanchev S, Zawada Z, Monincova L, et al. Synthesis of lucifensin by native chemical ligation and characteristics of its isomer having different disulfide bridge pattern. J Pept Sci. 2014;20:725-35.
Cerovsky V, Bem R. Lucifensins, the insect defensins of biomedical importance: the story behind maggot therapy. Pharmaceuticals (Basel). 2014;7:251-64.
El Shazely B, Veverka V, Fucik V, Voburka Z, Zdarek J, Cerovsky V. Lucifensin II, a defensin of medicinal maggots of the blowfly Lucilia cuprina (Diptera: Calliphoridae). J Med Entomol. 2013;50:571-8.
Nygaard MK, Andersen AS, Kristensen HH, Krogfelt KA, Fojan P, Wimmer R. The insect defensin lucifensin from Lucilia sericata. J Biomol NMR. 2012;52:277-82.
Cerovsky V, Slaninova J, Fucik V, et al. Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. Chembiochem. 2011;12:1352-61.
Blueman D, Bousfield C. The use of larval therapy to reduce the bacterial load in chronic wounds. J Wound Care. 2012;21:244-53.
Brown A, Horobin A, Blount DG, et al. Blow fly Lucilia sericata nuclease digests DNA associated with wound slough/eschar and with Pseudomonas aeruginosa biofilm. Med Vet Entomol. 2012;26:432-9.