2016, Number 2
<< Back Next >>
Biotecnol Apl 2016; 33 (2)
P3, a monoclonal antibody capable to activate B-1a cells
Martínez D, Cabrera L, Hernández AM
Language: English
References: 45
Page: 2211-2216
PDF size: 927.37 Kb.
ABSTRACT
P3 is a murine IgM mAb that recognizes N-glycolylated gangliosides, glycolipids expressed on the cell membranes of most vertebrates. It also binds other self-antigens like sulfatides and has high homology with an antibody that recognizes myelin oligodendrocytes. Previously it was demonstrated that P3 mAb is able to activate an idiotypic cascade involving autologous anti-idiotypic B and T cells, in the absence of adjuvant or carrier protein, despite being a self-protein. The anti-P3 idiotype response is mediated not only by CD4
+, but also by CD8
+ T cells. B-1a cells are the dominant B cell population during the early phases of development, when the idiotypic connectivity is established. Germline natural antibodies secreted by these cells play fundamental roles fighting infections and keeping the homeostasis. In this work, we show that the P3 mAb was able to recognize B-1a cells from naïve BALB/c mice. This antibody induced the overexpression of the activation markers CD25, CD69 and CD86, and increased the secretion of IgM and a mixed pattern of IFN-γ, IL-4 and IL-10 cytokines by B-1a cells. The P3 mAb ability of activating the B-1a cells could contribute to its immunogenicity in the syngeneic model, further supporting its use as a tool to specifically target and stimulate B-1a cells.
REFERENCES
Libbey JE, Peterson LK, Tsunoda I, Fujinami RS. Monoclonal MOG-reactive autoantibody from progressive EAE has the characteristics of a natural antibody. J Neuroimmunol. 2006;173(1-2):135-45.
Vazquez AM, Perez A, Hernandez AM, Macias A, Alfonso M, Bombino G, et al. Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody. Hybridoma. 1998;17(6):527-34.
Ismaili J, Brait M, Leo O, Urbain J. Assessment of a functional role of auto-anti-idiotypes in idiotype dominance. Eur J Immunol. 1995;25(3):830-7.
Reitan SK, Hannestad K. The primary IgM antibody repertoire: a source of potent idiotype immunogens. Eur J Immunol. 2001;31(7):2143-53.
Reitan SK, Hannestad K. Immunoglobulin heavy chain constant regions regulate immunity and tolerance to idiotypes of antibody variable regions. Proc Natl Acad Sci U S A. 2002;99(11):7588-93.
Zhang X, Smith DS, Guth A, Wysocki LJ. A receptor presentation hypothesis for T cell help that recruits autoreactive B cells. J Immunol. 2001;166(3):1562-71.
Lopez-Requena A, Bestagno M, Mateo de Acosta C, Cesco-Gaspere M, Vazquez AM, Perez R, et al. Gangliosides, Ab1 and Ab2 antibodies III. The idiotype of antiganglioside mAb P3 is immunogenic in a T cell-dependent manner. Mol Immunol. 2007;44(11):2915-22.
Perez A, Lombardero J, Mateo C, Mustelier G, Alfonso M, Vazquez AM, et al. Immunogenetic analysis of variable regions encoding AB1 and gamma-type AB2 antibodies from the NeuGc-containing ganglioside family. Hybridoma. 2001;20(4):211-21.
Martinez D, Rodriguez N, Grinan T, Rondon T, Vazquez AM, Perez R, et al. P3 mAb: An Immunogenic Anti-NeuGcGM3 Antibody with Unusual Immunoregulatory Properties. Front Immunol. 2012;3:94.
Ben-Yehuda A, Szabo P, LeMaoult J, Manavalan JS, Weksler ME. Increased VH 11 and VH Q52 gene use by splenic B cells in old mice associated with oligoclonal expansions of CD5 + B cells. Mech Ageing Dev. 1998;103(2):111-21.
Margry B, Wieland WH, van Kooten PJ, van Eden W, Broere F. Peritoneal cavity B-1a cells promote peripheral CD4+ T-cell activation. Eur J Immunol. 2013;43(9):2317-26.
Elliott M, Kearney JF. Idiotypic regulation of development of the B-cell repertoire. Ann N Y Acad Sci. 1992;651:336-45.
Hayakawa K, Hardy RR. Development and function of B-1 cells. Curr Opin Immunol. 2000;12(3):346-53.
Zhong X, Gao W, Degauque N, Bai C, Lu Y, Kenny J, et al. Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur J Immunol. 2007;37(9):2400-4.
Gao J, Ma X, Gu W, Fu M, An J, Xing Y, et al. Novel functions of murine B1 cells: active phagocytic and microbicidal abilities. Eur J Immunol. 2012;42(4):982-92.
Parra D, Rieger AM, Li J, Zhang YA, Randall LM, Hunter CA, et al. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. J Leukoc Biol. 2012;91(4):525-36.
Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11(1):34-46.
Vazquez AM, Alfonso M, Lanne B, Karlsson KA, Carr A, Barroso O, et al. Generation of a murine monoclonal antibody specific for N-glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids. Hybridoma. 1995;14(6):551-6.
Morris DL, Rothstein TL. Abnormal transcription factor induction through the surface immunoglobulin M receptor of B-1 lymphocytes. J Exp Med. 1993;177(3) :857-61.
Gronwall C, Silverman GJ. Natural IgM: beneficial autoantibodies for the control of inflammatory and autoimmune disease. J Clin Immunol. 2014;34 Suppl 1:S12-21.
Bogen B, Jorgensen T, Hannestad K. Recognition of lambda 1 and lambda 2 murine light chains by carrier-specific isologous T helper cells; effect of L-H chain assembly. Eur J Immunol. 1983;13(5):353-9.
Hernandez AM, Rodriguez M, Lopez- Requena A, Beausoleil I, Perez R, Vazquez AM. Generation of anti-Neu-glycolyl-ganglioside antibodies by immunization with an anti-idiotype monoclonal antibody: A self versus non-self-matter. Immunobiology. 2005;210(1):11-21.
Perez A, Mier ES, Vispo NS, Vazquez AM, Perez Rodriguez R. A monoclonal antibody against NeuGc-containing gangliosides contains a regulatory idiotope involved in the interaction with B and T cells. Mol Immunol. 2002;39(1-2):103-12.
Zenita K, Hirashima K, Shigeta K, Hiraiwa N, Takada A, Hashimoto K, et al. Northern hybridization analysis of VH gene expression in murine monoclonal antibodies directed to cancer-associated ganglioside antigens having various sialic acid linkages. J Immunol. 1990;144(11):4442-51.
Weng NP, Ritter E, Yucel E, Zhang D, Ritter G, Marcus DM. Specificity and structure of murine monoclonal antibodies against GM1 ganglioside. J Neuroimmunol. 1994;55(1):61-8.
Lopez-Requena A, Mateo De Acosta C, Vazquez AM, Perez R. Immunogenicity of autologous immunoglobulins: principles and practices. Mol Immunol. 2007;44(11):3076-82.
Rodriguez-Zhurbenko N, Rabade-Chediak M, Martinez D, Grinan T, Hernandez AM. Anti-NeuGcGM3 reactivity: a possible role of natural antibodies and B-1 cells in tumor immunosurveillance. Ann N Y Acad Sci. 2015;1362:224-38.
van Rooijen N. Direct intrafollicular differentiation of memory B cells into plasma cells. Immunol Today. 1990;11(5):154-7.
Kelsoe G. Life and death in germinal centers (redux). Immunity. 1996;4(2):107-11.
Gulbranson-Judge A, Casamayor-Palleja M, MacLennan IC. Mutually dependent T and B cell responses in germinal centers. Ann N Y Acad Sci. 1997;815:199-210.
Vigna AF, Godoy LC, Rogerio de Almeida S, Mariano M, Lopes JD. Characterization of B-1b cells as antigen presenting cells in the immune response to gp43 from Paracoccidioides brasiliensis in vitro. Immunol Lett. 2002;83(1):61-6.
Ehrenstein MR, O’Keefe TL, Davies SL, Neuberger MS. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc Natl Acad Sci U S A. 1998;95(17):10089-93.
Baumgarth N, Tung JW, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol. 2005;26(4):347-62.
Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999;286(5447):2156-9.
Baumgarth N, Chen J, Herman OC, Jager GC, Herzenberg LA. The role of B-1 and B-2 cells in immune protection from influenza virus infection. Curr Top Microbiol Immunol. 2000;252:163-9.
Jayasekera JP, Moseman EA, Carroll MC. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J Virol. 2007;81(7):3487-94.
Chou MY, Fogelstrand L, Hartvigsen K, Hansen LF, Woelkers D, Shaw PX, et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest. 2009;119(5):1335-49.
Kaveri SV, Silverman GJ, Bayry J. Natural IgM in immune equilibrium and harnessing their therapeutic potential. J Immunol. 2012;188(3):939-45.
Boes M, Esau C, Fischer MB, Schmidt T, Carroll M, Chen J. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J Immunol. 1998;160(10):4776-87.
Baumgarth N, Herman OC, Jager GC, Brown LE, Herzenberg LA, Chen J. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med. 2000;192(2):271-80.
Jeong HD, Teale JM. Contribution of the CD5+ B cell to D-proximal VH family expression early in ontogeny. J Immunol. 1990;145(8):2725-9.
Casali P, Kasaian MT, Haughton G. B-1 (CD5 B) cells. En: Coutinho A, Kazatchkine MD, editores. Autoimmunity Physiology and Disease New York: Wiley-Liss Inc.; 1994. p. 57.
Bayry J, Lacroix-Desmazes S, Donkova- Petrini V, Carbonneil C, Misra N, Lepelletier Y, et al. Natural antibodies sustain differentiation and maturation of human dendritic cells. Proc Natl Acad Sci U S A. 2004;101(39) :14210-5.
Hamanova M, Chmelikova M, Nentwich I, Thon V, Lokaj J. Anti-Gal IgM, IgA and IgG natural antibodies in childhood. Immunol Lett. 2015;164(1):40-3.
Rothstein TL. Natural Antibodies as Rheostats for Susceptibility to Chronic Diseases in the Aged. Front Immunol. 2016;7:127.