2016, Number 1
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2016; 32 (1)
Cytotoxicity in vitro and potential of quinoid compounds as antitumor agents
Casado HI, Mora GN, Ferrer CG, Fernández TS, Pino BD
Language: Spanish
References: 46
Page: 30-42
PDF size: 130.43 Kb.
ABSTRACT
The search and identification of new active compounds for cancer therapy has focused
mainly on research of natural products and their synthetic analogs. This paper aims to
systematize the knowledge of the molecular basis of the cytotoxic activity of the
quinoid compounds and their use as an antitumor agent. A review was performed on
original articles, experimental section, published in the 2004-2014 decade in some
databases of the Virtual Health Library (VHL). Numerous studies have supported the
ability of quinoid products inhibiting cell growth, based on their ability to damage DNA
by oxidative stress and thus have a biorreductive interaction with other biomolecules.
Furthermore, the power of cytotoxicity increases quinoid compounds alkylated with
side chains attached to rings and quinone flavored motif. Experimental evidence
suggests a promising future of these molecules as antitumor agents, based on their
high selectivity and cytotoxicity against neoplastic cell lines.
REFERENCES
Global status report on non communicable diseases [Internet]. Geneva: WHO; 2010 [cited 2014 Oct 4]. Available from: http://www.who.int/nmh/publications/ncd_report2010/en/index.html
Tambama P, Abegaz B, Mukanganyama S. Antiproliferative Activity of the Isofuranonaphthoquinone Isolated from Bulbine frutescens against Jurkat T Cells. Biomed Res Int. 2014;2014:752941. doi: 10.1155/2014/752941.
Dirección Nacional de Registros Médicos y Estadísticas de Salud. Anuario Estadístico de Salud, 2013. La Habana: Ministerio de Salud Pública;2013. [citado 2014 Oct 4]. Disponible en: http://files.sld.cu/dne/files/2014/05/anuario-2013-espe. pdf
Kingston DG. A Natural Love of Natural Products. J Org Chem. 2008 Jun;73(11):3975–84. doi: 10.1021/jo800239a.
Kingston DG. Modern Natural Products Drug Discovery and its Relevance to Biodiversity Conservation. J Nat Prod. 2011;74(3):496–511. doi:10.1021/np100550t.
Karikas GA. Anticancer and chemopreventing natural products: some biochemical and therapeutic aspects. J BUON 2010 Oct-Dec;15(4):627-38.
Deyrup S, Eckman LE, McCarthy PH, Smedley SR, Meinwald J, Schroeder FC. 2D NMR-spectroscopic screening reveals polyketides in ladybugs. Proc Natl Acad Sci USA. 2011;108(24):9753-8. doi: 10.1073/pnas.1107020108.
Coseri S. Natural products and their analogues as efficient anticancer drugs. See comment in PubMed Commons belowMini Rev Med Chem 2009 May;9(5):560-71.
Tan G, Gyllenhaal C, Soejarto DD. Biodiversity as a source of anticancer drugs. Curr Drug Targets. 2006;7(3):265-77.
Harvey AL. Natural products as a screening resource. Curr Opin Chem Biol. 2007;11(5):480-4.
See comment in PubMed Commons below Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007; 9(12):767-76.
Tacoronte Morales JE, Chervas T, Prieto Trueba D, Rodríguez Aragonés C, Díaz Aspiazu M, González Cairo V. Una benzoquinona natural aislada de la secreción defensiva de un milípedo cubano endémico, Rhinocricus duvernoyi Karsch, del Valle de Yumurí. Revista CENIC Ciencias Químicas. 2005;36(2):115-6.
Gurbani D, Bharti SK, Kumar A, Pandey AK, Ana GR, Verma A et. al. Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int J Hyg Environ Health. 2013;216(5):553-65. doi: 10.1016/j.ijheh.2013.04.001.
Endo S, Nishiyama A, Suyama M, Takemura M, Soda M, Chen H et. al. Protective roles of aldo-keto reductase 1B10 and autophagy against toxicity induced by pquinone metabolites of tert-butylhydroquinone in lung cancer A549 cells. Chem Biol Interact. 2015 Jun 5;234:282-9.doi: 10.1016/j.cbi.2014.09.023.
Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev. 2010 Jan;39(1):301-12. doi: 10.1039/b918763b.
Gurbani D, Bharti SK, Kumar A, Pandey AK, Ana GR, Verma A et. al. Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int J Hyg Environ Health. 2013;216(5):553-65. doi: 10.1016/j.ijheh.2013.04.001.
Benites J, Valderrama JA, Rivera F, Rojo L, Campos N, Pedro M, Nascimento MSJ. Studies on quinones. Part 42: Síntesis of furylquinone and hydroquinones with antiproliferative activity against human tumor cell lines. Bioorg Med Chem. 2008 Jan 15;16(2):862-8.
Ekwal B, Ekwal B, Sjostrom M. MEIC evaluation of acute systemic toxicity:part VIII. Multivariate partial least squares evaluation, including the selection of battery cell line test with a good prediction of human acute lethal peak blood concentrations for 50chemicals. ATLA.2000; 28(Suppl1):201-34.
Valderrama JA, Ibacache JA, Arancibia V, Rodriguez J, Theoduloz C. Studies on quinones. Part 45: Novel 7-aminoisoquinoline-5,8-quinone derivatives with antitumor properties on cancer cell lines. Bioorg Med Chem. 2009 Apr;17(7):2894–901. doi: 10.1016/j.bmc.2009.02.013.
Alvala R, Mallika A, Venkatesh S, Arunasree MK, Vamshi KI, Madhava R. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells. Daru. 2012 Dec;20(1):86. doi: 10.1186/2008-2231-20-86.
Al-Malki, Sayed BMC. Thymoquinone attenuates cisplatin-induced hepatotoxicity via nuclear factor kappa- β. BMC Complement Altern Med. 2014 Aug 3;14:282. doi: 10.1186/1472-6882-14-282.
Valderrama JA, González MF, Pessoa-Mahana D, Tapia R, Fillion H, Pautet F, et al. Studies on quinones. Part 41: Synthesis and cytotoxicity of isoquinoline-containing polycyclic quinines. Bioorg Med Chem. 2006 Jul 15;14(14):5003-11.
Rattanaburi S, Daus M, Watanapokasin R, Mahabusarakam W. A new bisanthraquinone and cytotoxic xanthones from Cratoxylum cochinchinense. Nat Prod Res. 2014;28(9):606-10. doi: 10.1080/14786419.2014.886212.
Benites J, Valderrama JA, Taper H, Buc Calderon P. An in vitro comparative study with furyl-1,4-quinones endowed with anticancer activities. Invest New Drugs. 2011 Oct;29(5):760-7. doi: 10.1007/s10637-010-9419-1.
Abdissa N, Induli M, Fitzpatrick P, Alao JP, Sunnerhagen P, Landberg G et al. Cytotoxic quinones from the roots of Aloe dawei. Molecules 2014;19(3):3264-73. doi: 10.3390/molecules19033264.
Rodríguez CE, Shinyashiki M, Froines J, Yu RC, Fukuto JM, Cho AK. An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system. Toxicology. 2004 Sep;201:185–96.
Park JH, Gelhaus S, Vedantam S, Oliva AL, Batra A, Blair IA, et. al. The Pattern of p53 Mutations Caused by PAH o-Quinones is Driven by 8-oxo-dGuo Formation while the Spectrum of Mutations is Determined by Biological Selection for Dominance. Chem Res Toxicol. 2008;21(5):1039–49. doi:10.1021/tx700404a.
Yin R, Zhang D, Song Y, Zhu BZ, Wang H. Potent DNA damage by polyhalogenated quinones and H2O2 via a metal-independent and Intercalationenhanced oxidation mechanism. Sci Rep. 2013;3:1269. doi: 10.1038/srep01269.
See comment in PubMed Commons belowShang Y, Zhang L, Jiang Y, Li Y, Lu P. Airborne quinones induce cytotoxicity and DNA damage in human lung epithelial A549 cells: the role of reactive oxygen species. Chemosphere. 2014 Apr;100:42-9. doi: 10.1016/j.chemosphere.2013.12.079.
Watanabe N, Forman HJ. Autoxidation of extracellular hydroquinones is a causative event for the cytotoxicity of menadione and DMNQ in A549-S cells. Arch Biochem Biophys. 2003 Mar;411:145–57.
Tu T, Giblin D, Gross ML. A Structural Determinant of Chemical Reactivity and Potential Health Effects of Quinones from Natural Products. Chem Res Toxicol. 2011;24(9):1527–39. doi:10.1021/tx200140s.
Luo L, Jiang L, Gengb C, Caoa J, Zhonga L. Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells. Chemico-Biol Interact. 2008;173(1):1–8. doi: 10.1016/j.cbi.2008.02.002.
Kim IS, Sohn H, Jin I. Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377. J Microbiol 2011;49(5):816-23. doi: 10.1007/s12275-011-1154-6.
Ishihara Y, Tsuji K, Ishii S, Kashiwagi K, Shimamoto N. Contribution of reductase activity to quinone toxicity in three kinds of hepatic cells. Biol Pharm Bull. 2012;35(4):634-8.
Endo S, Nishiyama A, Suyama M, Takemura M, Soda M, Chen H, et. al. Protective roles of aldo-keto reductase 1B10 and autophagy against toxicity induced by pquinone metabolites of tert-butylhydroquinone in lung cancer A549 cells. See comment in PubMed Commons belowChem Biol Interact. 2015 Jun;234:282-9. doi: 10.1016/j.cbi.2014.09.023.
Shang Y, Fan L, Feng J, Lv S, Wu M, Li B, et al. Genotoxic and inflammatory effects of organic extracts from traffic-related particulate matter in human lung epithelial A549 cells: the role of quinones. Toxicol In Vitro 2013;27(2):922-31. doi: 10.1016/j.tiv.2013.01.008.
Xu D, Li L, Liu L, Dong H, Deng Q, Yang X et. al. Polychlorinated biphenyl quinone induces mitochondrial-mediated and caspase-dependent apoptosis in HepG2 cells. Environ Toxicol. 2014. doi: 10.1002/tox.21979.
Aguiló JI, Iturralde M, Monleón I, Iñarrea P, Pardo J, Martínez-Lorenzo MJ et. al. Cytotoxicity of quinone drugs on highly proliferative human leukemia T cells: reactive oxygen species generation and inactive shortened SOD1 isoform implications. Chem Biol Interact. 2012;198(1-3):18-28. doi: 10.1016/j.cbi.2012.05.001.
Gordaliza M. Cytotoxic Terpene Quinones from Marine Sponges. Mar Drugs. 2010;8(12):2849-70; doi: 10.3390/md8122849.
Pejin B, Iodice C, Tommonaro G, Bogdanovic G, Kojic V, De Rosa S. Further in vitro evaluation of cytotoxicity of the marine natural product derivative 4'-leucineavarone. Nat Prod Res. 2014;28(5):347-50. doi: 10.1080/14786419.2013.863201.
Daletos G, de Voogd NJ, Müller WE, Wray V, Lin W, Feger D, et al. Cytotoxic and protein kinase inhibiting nakijiquinones and nakijiquinols from the sponge Dactylospongia metachromia. J Nat Prod. 2014;77(2):218-26. doi: 10.1021/np400633m.
Ovenden Simon, Nielson JL, Liptrot CH, Willis RH, Tapiolas DM, Wright AD, et al. Sesquiterpene Benzoxazoles and Sesquiterpene Quinones from the Marine Sponge Dactylospongia elegans. J Nat Prod. 2011;74(1): 65–8.
Sieveking I, Thomas P, Estévez JC, Quiñones N, Cuéllar MA, Villena J, et al. Phenylaminonaphthoquinones and related compounds: synthesis, trypanocidal and cytotoxic activities. Bioorg Med Chem. 2014;22(17):4609-20. doi: 10.1016/j.bmc.2014.07.030.
Anusevičius Ž, Nivinskas H, Šarlauskas J, Sari MA, Boucher JL, Čėnas N. Singleelectron reduction of quinone and nitroaromatic xenobiotics by recombinant rat neuronal nitric oxide synthase. Acta Biochim Pol. 2013;60(2):217–22.
Fagan V, Bonham S, Carty MP, Saenz-Méndez P, Eriksson LA, Aldabbagh F. COMPARE analysis of the toxicity of an iminoquinone derivative of the imidazo[5,4- f]benzimidazoles with NAD(P)H:quinone oxidoreductase 1 (NQO1) activity and computational docking of quinones as NQO1 substrates. Bioorg Med Chem. 2012;20(10):3223-32. doi: 10.1016/j.bmc.2012.03.063.
Miguel Del Corral JM,Gordaliza M ,Castro MA,Mahiques MM,Chamorro P, Molinari Aet. al. New selective cytotoxic diterpenylquinones and diterpenylhydroquinones. J Med Chem. 2001;44(8):1257-67.