2016, Number 2
Next >>
TIP Rev Esp Cienc Quim Biol 2016; 19 (2)
Cytotoxic and genotoxic activity of phenolic fractions from Ulomoides dermestoides Fairmaire, 1893 (Coleoptera, Tenebrionidae), in HaCat cells
Mendoza-Meza DL, España-Puccini P
Language: English
References: 49
Page: 83-91
PDF size: 1104.21 Kb.
ABSTRACT
Ulomoides dermestoides (Fairmaire, 1893) is a beetle used in alternative medicine treatments in some South American countries. The objective of this study was to evaluate the cytotoxic and genotoxic effects of phenolic fractions (PF) from
U. dermestoides. The PF were separated from crude extracts in acetone (PFAc) and ethanol (PFEtOH). The total phenolic content (TPC) was determined by Folin-Ciocalteu test. Volatile and semi-volatile compounds presents in crude extracts were identified by GC-MS; moreover, phenolic fractions were analyzed by HPLC-MS. The cellular viability, after exposition to phenolic fractions, was determined by Trypan blue exclusion test and MTT reduction assay on immortalized human keratinocyte cell line (HaCat); the degree of DNA damage was detected by alkaline comet-DNA assay. The TPC in PFAc and PFEtOH were: 11.34±0.88 mgGAE/g and 6.52±1.28 mgGAE/g, respectively (mean.dif: 4.951; p value = 0.0000). In both samples, HPLC-MS showed a pseudo-molecular ion [M-H]− at m/z 153, tentatively identified as protocatechuic acid. The results of cytotoxic assays suggest that the viability of HaCat cells depends on the concentration and exposure time of each treatment. Furthermore, the comet assay revealed moderate genotoxic effect after 48 hours of exposure to PFAc (40 to 160 µg.mL
-1); cytotoxic/genotoxic activity of this fraction could be related to the higher phenol contents.
REFERENCES
Costa Neto, E.M., Ramos-Elorduy, J.& Pino, J.M. Los insectos medicinales de Brasil: primeros resultados. Boletín Sociedad Entomológica Aragonesa. 38: 395−414 (2006).
Chu, G.S., Palmieri, J.R. & Sullivan, J,T. Beetle-eating: a Malaysia folk medical practice and its public health implications. Tropical and Geographical Medicine. 29: 422-427 (1977).
Costa-Neto, E.M. The use of insects in folk medicine in the state of Bahia Northeastern Brazil, with notes on insects reported elsewhere in Brazilian folk medicine. Human Ecolology. 30: 245-263 (2002).
Flores, G.E., Padín, S.B. & Stetson, R.E. First records of the Oriental species Ulomoides dermestoides (Coleoptera: Tenebrionidae) in Argentina. Revista de la Sociedad Entomológica Argentina. 61: 48-50 (2002).
Santos, R.C., Lunardelli, A., Caberlon, E., Bastos, C.M., Nunes, F.B., Pires, M.G., et al. Anti-inflammatory and immunomodulatory effects of Ulomoides dermestoides on induced pleurisy in rats and lymphoproliferation in vitro. Inflammation. 33: 173-179 (2010).
Crespo, R., Villaverde, M.L., Girotti, J.R., Güerci, A., Juárez, M.P. & de Bravo, M.G. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells. Journal of Ethnopharmacology. 136: 204-209 (2011).
Tobón, F.A., Gutiérrez, G.P. & Mejía, M.L. Evaluación del perfíl neurofarmacológico del aceite de Ulomoides dermestoides (Coleoptera: Tenebrionidae). Revista Colombiana de Entomología. 37: 251-255 (2011).
Mendoza, D., Salgado, M. & Durant, L. Capacidad antioxidante de extractos metanólicos de cuerpo entero del escarabajo Ulomoides dermestoides (Chevrolat, 1893). Revista Cubana de Investigaciones Biomédicas. 32: 402-410 (2013).
Long, D., Defu, C., Beibei, Z., Xiaocan, L. & Jia, Y. Optimization of extraction conditions for superoxide dismutase from Martianus dermestoides. Journal of Northeast Forestry University. 37: 69-70 (2009).
Yu, W.G., Zhang, B.B., Shen, Y.J., Li, Y., Tian, Y.B. & Jiang, M.H. Purification and Characterization of Superoxide Dismutase from Martianus dermestoides Chevrola. Advanced Materials Research. 773: 336-341(2013).
Al-Tameemi, W., Dunnill, C., Hussain, O., Komen, M.M., van den Hurk, C.J., Collett, A. & Georgopoulos, N.T. Use of in vitro human keratinocyte models to study the effect of cooling on chemotherapy drug-induced cytotoxicity. Toxicology in Vitro. 28: 1366-1376 (2014).
Hewitt, N.J., Edwards, R.J., Fritsche, E., Goebel, C., Aeby, P., Scheel, J., et al. Use of human in vitro skin models for accurate and ethical risk assessment: metabolic considerations. Toxicology Science. 133:209-217 (2013).
Odraska, P., Mazurova, E., Dolezalova, L. & Blaha, L. In vitro evaluation of the permeation of cytotoxic drugs through reconstructed human epidermis and oral epithelium. Klin Onkol. 24:195-202 (2011).
Boukamp, P., Popp, S., Altmeyer, S., Hülsen, A., Fasching, C., Cremer, T. & Fusenig, N.E. Sustained nontumorigenic phenotype correlates with a largely stable chromosome content during long-term culture of the human keratinocyte line HaCaT. Genes and Chromosomes Cancer. 19:201-214 (1997).
Rosler, K.H. & Goodwin, R.S. A general use of Amberlite XAD-2 resin for the purification of flavonoids from aqueous fractions. Journal of Natural Products. 47: 188 (1984).
Ozgen, M., Wyzgoski, F. & Tulio, A. Antioxidant capacity and phenolic antioxidants of Midwestern black raspberries grown for direct markets are influenced by production site. Hortscience: A Publication of the American Society for Hortcultural Science. 43: 2039-2047 (2008).
Adams, R.P. Identification of essential oil components by Gas Chromatography/Mass Spectroscopy. US (United States): Allured Publ Corp Carol Stream, IL, USA (1995).
Simonovska, B., Vovk, I., Andrensek, S., Valentová, K. & Ulrichová, J. Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. Journal of Chromatography A. 1016: 89-98 (2003).
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assay. Journal of Immunological Methods. 65: 55-63 (1983).
Storber, W. Trypan blue exclusion test of cell viability. Current Protocols in Immunology. Appendix 3:Appendix 3B (2001).
Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 35: 206-221 (2000).
Pryor, M.G.M., Rusell, P.B. & Todd, A.R. Phenolic substance concerned in hardening the insect cuticle. Nature. 159: 399- 400 (1947).
Whitehead, D.L. Haemocytes play a commensal role in the synthesis of the dihydrobenzoate required as a precursor for sclerotization (ootheca) in the cockroach Periplaneta americana (L). Bulletin of Entomological Research. 101: 251-259 (2011).
Czapla, T.H., Hopkins, T.L., Kramer, K.J. & Morgan, T.S. Diphenols in hemolymph and cuticle during development and cuticle tannig of Periplaneta americana (L.) and other cockroach species. Archives of Insect Biochemistry and Physiology. 7:13-28 (1988).
Andersen, S.O. Cuticular sclerotization in the beetles Pachynoda epphipiata and Tenebrio molitor. Journal of Insect Physiology. 21: 1225-1232 (1975).
Sahil, K. & Souravh, B. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacology. 952943: 1-9 (2014).
Tanaka, T., Tanaka, T. & Tanaka, M. Potential cancer chemopreventive activity of protocatechuic acid. Journal of Experimental and Clinical Medicine. 3: 27-33 (2011).
Shoemaker, M., Cohen, I. & Campbell, M. Reduction of MTT by aqueous herbal extracts in the absence of cells. Journal of Ethnopharmacology. 93: 381-388 (2004).
Peng, L., Wang, B. & Ren, P. Reduction of MTT by flavonoids in the absence of cells. Colloids and Surfaces B: Biointerfaces. 45: 108-111 (2005).
Han, M., Li, J., Tan, Q., Sun, Y. & Wang, Y. Limitations of the use of MTT assay for screening in drug discovery. Journal of Chinese Pharmaceutical Sciences. 19: 195-200 (2010).
Denizot, F. & Lang, R. Rapid colorimetric assay for cell growth and survival, Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods. 89: 271–277 (1986).
Bruggisser, R., von Daeniken, K., Jundt, G., Schaffner, W. & Tullberg-Reinert, H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Medica. 68:445-448 (2002).
Masella, R., Cantafora, A., Modesti, D., Cardilli, A., Gennaro, L., Bocca, A., et al. Antioxidant activity of 3,4-DHPEA-EA and protocatechuic acid: a comparative assessment with other olive oil biophenols. Redox Report. 4: 113-121 (1999).
Yoshino, M. & Murakami, K. Interaction of iron with polyphenolic compounds: application to antioxidant characterization. Analytical Biochemistry. 257: 40-44 (1998).
Lodovici, M., Guglielmi, F., Meoni, M. & Dolara, P. Effect of natural phenolic acids on DNA oxidation in vitro. Food and Chemical Toxicology. 39: 1205-1210 (2001).
Ueda, J.I., Saito, N., Shimazu, Y. & Ozawa, T. A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Archives of Biochemistry and Biophysics. 333:377-384 (1996).
Fukumoto, L.R. & Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry. 48: 3597-3604 (2000).
Nakamura, Y., Torikai, K. & Ohigashi, H. A catechol antioxidant, protocatechuic acid, potentiates inflammatory leukocytederived oxidative stress in mouse skin via a tyrosinase bioactivation pathway. Free Radical Biology and Medicine. 30: 967-978 (2001).
Nakamura, Y., Torikai, K. & Ohigashi, H. Toxic dose of a simple phenolic antioxidant, protocatechuic acid, attentuates the glutathione level in ICR mouse liver and kidney. Journal of Agricultural and Food Chemistry. 49: 5674-5678 (2001).
Babich, H., Sedletcaia, A. & Kenigsberg, B. In vitro cytotoxicity of protocatechuic acid to cultured human cell from oral tissue: Involvement in oxidative stress. Pharmacology and Toxicology. 91:245-253 (2002).
Galati, G., Sabzevari, O., Wilson, J.X. & O’Brien, P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology. 177: 91-104 (2002).
Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics. 476:107-112 (2008).
Sang, S., Yang, I., Buckley, B., Hoc, C. & Yang, C. Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (−)-epigallocatechin-3-gallate: studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radical Biology and Medicine. 43: 362-371 (2007).
Halliwell, B. Oxidative stress in cell culture: an under-appreciated problem? FEBS Letters. 540: 3-6 (2003).
Halliwell, B., Clement, M.V., Ramalingam, J. & Long, L.H. Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life. 50: 251-257 (2000).
Long, L.H., Clement, M.V. & Halliwell, B. Artefacts in cell culture: Rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)-catechin and quercetin to commonly-used cell culture media. Biochemical and Biophysical Research Communications. 273: 50-53 (2000).
Ferguson, L.R. Role of plant polyphenols in genomic stability. Mutation Research. 475: 89-111 (2001).
Strick, R., Strissel, P.L., Borgers, S., Smith, S.L. & Rowley, J.D. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proceedings of the National Academy of Sciences of the United States of America. 97: 4790-4795 (2000).
Lambert, J.D., Sang, S. & Yang, C.S. Possible controversy over dietary polyphenols: Benefits vs risks. Chemical Research in Toxicology. 20:583-585 (2007).