2016, Número 2
Siguiente >>
TIP Rev Esp Cienc Quim Biol 2016; 19 (2)
Actividad citotóxica y genotóxica de fracciones fenólicas de Ulomoides dermestoides Fairmaire, 1893 (Coleoptera, Tenebrionidae), en células HaCat
Mendoza-Meza DL, España-Puccini P
Idioma: Ingles.
Referencias bibliográficas: 49
Paginas: 83-91
Archivo PDF: 1104.21 Kb.
RESUMEN
Ulomoides dermestoides (Fairmaire, 1893), es un escarabajo usado en medicina alternativa en algunos países de Sudamérica. El objetivo de este estudio fue evaluar el efecto citotóxico y genotóxico de fracciones fenólicas (FF) de extractos de
U. dermestoides. Las FF se separaron desde extractos acetónicos (FFAc) y etanólicos (FFEtOH). El contenido de fenoles totales (CFT) se determinó mediante ensayo de Folin-Ciocalteu. Compuestos volátiles y semivolátiles, presentes en los extractos crudos, se identificaron mediante CG-EM; por otra parte, las FF se analizaron por HPLC-EM. La viabilidad celular, después de exposición a las FF se determinó mediante la prueba de exclusión con azul de tripano y el ensayo de reducción con MTT, usando la línea celular de queratinocitos humanos inmortalizados (HaCat); el grado de daño en el ADN se detectó mediante el ensayo de ADN-cometa alcalino. CFT en FFAc y FFEtOH fueron: 11,34±0,88 mgAGE/g y 6,52±1,28 mgAGE/g, respectivamente (dif.media: 4,951;
p value = 0.0000). En ambas muestras, HPLC-EM mostró un ion pseudo-molecular [M−H]− a 153m/z, identificado tentativamente como ácido protocateuico. Los resultados de los ensayos de citotoxicidad sugieren que la viabilidad de células HaCat depende de la concentración y el tiempo de exposición a cada tratamiento. Además, el ensayo cometa reveló efecto genotóxico moderado después de 48 h de exposición a FFAc (40 a 160 µg.mL
-1). La actividad citotóxica/genotóxica de esta fracción podría estar relacionada con el contenido más alto de fenoles.
REFERENCIAS (EN ESTE ARTÍCULO)
Costa Neto, E.M., Ramos-Elorduy, J.& Pino, J.M. Los insectos medicinales de Brasil: primeros resultados. Boletín Sociedad Entomológica Aragonesa. 38: 395−414 (2006).
Chu, G.S., Palmieri, J.R. & Sullivan, J,T. Beetle-eating: a Malaysia folk medical practice and its public health implications. Tropical and Geographical Medicine. 29: 422-427 (1977).
Costa-Neto, E.M. The use of insects in folk medicine in the state of Bahia Northeastern Brazil, with notes on insects reported elsewhere in Brazilian folk medicine. Human Ecolology. 30: 245-263 (2002).
Flores, G.E., Padín, S.B. & Stetson, R.E. First records of the Oriental species Ulomoides dermestoides (Coleoptera: Tenebrionidae) in Argentina. Revista de la Sociedad Entomológica Argentina. 61: 48-50 (2002).
Santos, R.C., Lunardelli, A., Caberlon, E., Bastos, C.M., Nunes, F.B., Pires, M.G., et al. Anti-inflammatory and immunomodulatory effects of Ulomoides dermestoides on induced pleurisy in rats and lymphoproliferation in vitro. Inflammation. 33: 173-179 (2010).
Crespo, R., Villaverde, M.L., Girotti, J.R., Güerci, A., Juárez, M.P. & de Bravo, M.G. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells. Journal of Ethnopharmacology. 136: 204-209 (2011).
Tobón, F.A., Gutiérrez, G.P. & Mejía, M.L. Evaluación del perfíl neurofarmacológico del aceite de Ulomoides dermestoides (Coleoptera: Tenebrionidae). Revista Colombiana de Entomología. 37: 251-255 (2011).
Mendoza, D., Salgado, M. & Durant, L. Capacidad antioxidante de extractos metanólicos de cuerpo entero del escarabajo Ulomoides dermestoides (Chevrolat, 1893). Revista Cubana de Investigaciones Biomédicas. 32: 402-410 (2013).
Long, D., Defu, C., Beibei, Z., Xiaocan, L. & Jia, Y. Optimization of extraction conditions for superoxide dismutase from Martianus dermestoides. Journal of Northeast Forestry University. 37: 69-70 (2009).
Yu, W.G., Zhang, B.B., Shen, Y.J., Li, Y., Tian, Y.B. & Jiang, M.H. Purification and Characterization of Superoxide Dismutase from Martianus dermestoides Chevrola. Advanced Materials Research. 773: 336-341(2013).
Al-Tameemi, W., Dunnill, C., Hussain, O., Komen, M.M., van den Hurk, C.J., Collett, A. & Georgopoulos, N.T. Use of in vitro human keratinocyte models to study the effect of cooling on chemotherapy drug-induced cytotoxicity. Toxicology in Vitro. 28: 1366-1376 (2014).
Hewitt, N.J., Edwards, R.J., Fritsche, E., Goebel, C., Aeby, P., Scheel, J., et al. Use of human in vitro skin models for accurate and ethical risk assessment: metabolic considerations. Toxicology Science. 133:209-217 (2013).
Odraska, P., Mazurova, E., Dolezalova, L. & Blaha, L. In vitro evaluation of the permeation of cytotoxic drugs through reconstructed human epidermis and oral epithelium. Klin Onkol. 24:195-202 (2011).
Boukamp, P., Popp, S., Altmeyer, S., Hülsen, A., Fasching, C., Cremer, T. & Fusenig, N.E. Sustained nontumorigenic phenotype correlates with a largely stable chromosome content during long-term culture of the human keratinocyte line HaCaT. Genes and Chromosomes Cancer. 19:201-214 (1997).
Rosler, K.H. & Goodwin, R.S. A general use of Amberlite XAD-2 resin for the purification of flavonoids from aqueous fractions. Journal of Natural Products. 47: 188 (1984).
Ozgen, M., Wyzgoski, F. & Tulio, A. Antioxidant capacity and phenolic antioxidants of Midwestern black raspberries grown for direct markets are influenced by production site. Hortscience: A Publication of the American Society for Hortcultural Science. 43: 2039-2047 (2008).
Adams, R.P. Identification of essential oil components by Gas Chromatography/Mass Spectroscopy. US (United States): Allured Publ Corp Carol Stream, IL, USA (1995).
Simonovska, B., Vovk, I., Andrensek, S., Valentová, K. & Ulrichová, J. Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. Journal of Chromatography A. 1016: 89-98 (2003).
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assay. Journal of Immunological Methods. 65: 55-63 (1983).
Storber, W. Trypan blue exclusion test of cell viability. Current Protocols in Immunology. Appendix 3:Appendix 3B (2001).
Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis. 35: 206-221 (2000).
Pryor, M.G.M., Rusell, P.B. & Todd, A.R. Phenolic substance concerned in hardening the insect cuticle. Nature. 159: 399- 400 (1947).
Whitehead, D.L. Haemocytes play a commensal role in the synthesis of the dihydrobenzoate required as a precursor for sclerotization (ootheca) in the cockroach Periplaneta americana (L). Bulletin of Entomological Research. 101: 251-259 (2011).
Czapla, T.H., Hopkins, T.L., Kramer, K.J. & Morgan, T.S. Diphenols in hemolymph and cuticle during development and cuticle tannig of Periplaneta americana (L.) and other cockroach species. Archives of Insect Biochemistry and Physiology. 7:13-28 (1988).
Andersen, S.O. Cuticular sclerotization in the beetles Pachynoda epphipiata and Tenebrio molitor. Journal of Insect Physiology. 21: 1225-1232 (1975).
Sahil, K. & Souravh, B. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacology. 952943: 1-9 (2014).
Tanaka, T., Tanaka, T. & Tanaka, M. Potential cancer chemopreventive activity of protocatechuic acid. Journal of Experimental and Clinical Medicine. 3: 27-33 (2011).
Shoemaker, M., Cohen, I. & Campbell, M. Reduction of MTT by aqueous herbal extracts in the absence of cells. Journal of Ethnopharmacology. 93: 381-388 (2004).
Peng, L., Wang, B. & Ren, P. Reduction of MTT by flavonoids in the absence of cells. Colloids and Surfaces B: Biointerfaces. 45: 108-111 (2005).
Han, M., Li, J., Tan, Q., Sun, Y. & Wang, Y. Limitations of the use of MTT assay for screening in drug discovery. Journal of Chinese Pharmaceutical Sciences. 19: 195-200 (2010).
Denizot, F. & Lang, R. Rapid colorimetric assay for cell growth and survival, Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods. 89: 271–277 (1986).
Bruggisser, R., von Daeniken, K., Jundt, G., Schaffner, W. & Tullberg-Reinert, H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Medica. 68:445-448 (2002).
Masella, R., Cantafora, A., Modesti, D., Cardilli, A., Gennaro, L., Bocca, A., et al. Antioxidant activity of 3,4-DHPEA-EA and protocatechuic acid: a comparative assessment with other olive oil biophenols. Redox Report. 4: 113-121 (1999).
Yoshino, M. & Murakami, K. Interaction of iron with polyphenolic compounds: application to antioxidant characterization. Analytical Biochemistry. 257: 40-44 (1998).
Lodovici, M., Guglielmi, F., Meoni, M. & Dolara, P. Effect of natural phenolic acids on DNA oxidation in vitro. Food and Chemical Toxicology. 39: 1205-1210 (2001).
Ueda, J.I., Saito, N., Shimazu, Y. & Ozawa, T. A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Archives of Biochemistry and Biophysics. 333:377-384 (1996).
Fukumoto, L.R. & Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agricultural and Food Chemistry. 48: 3597-3604 (2000).
Nakamura, Y., Torikai, K. & Ohigashi, H. A catechol antioxidant, protocatechuic acid, potentiates inflammatory leukocytederived oxidative stress in mouse skin via a tyrosinase bioactivation pathway. Free Radical Biology and Medicine. 30: 967-978 (2001).
Nakamura, Y., Torikai, K. & Ohigashi, H. Toxic dose of a simple phenolic antioxidant, protocatechuic acid, attentuates the glutathione level in ICR mouse liver and kidney. Journal of Agricultural and Food Chemistry. 49: 5674-5678 (2001).
Babich, H., Sedletcaia, A. & Kenigsberg, B. In vitro cytotoxicity of protocatechuic acid to cultured human cell from oral tissue: Involvement in oxidative stress. Pharmacology and Toxicology. 91:245-253 (2002).
Galati, G., Sabzevari, O., Wilson, J.X. & O’Brien, P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology. 177: 91-104 (2002).
Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of Biochemistry and Biophysics. 476:107-112 (2008).
Sang, S., Yang, I., Buckley, B., Hoc, C. & Yang, C. Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (−)-epigallocatechin-3-gallate: studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radical Biology and Medicine. 43: 362-371 (2007).
Halliwell, B. Oxidative stress in cell culture: an under-appreciated problem? FEBS Letters. 540: 3-6 (2003).
Halliwell, B., Clement, M.V., Ramalingam, J. & Long, L.H. Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life. 50: 251-257 (2000).
Long, L.H., Clement, M.V. & Halliwell, B. Artefacts in cell culture: Rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)-catechin and quercetin to commonly-used cell culture media. Biochemical and Biophysical Research Communications. 273: 50-53 (2000).
Ferguson, L.R. Role of plant polyphenols in genomic stability. Mutation Research. 475: 89-111 (2001).
Strick, R., Strissel, P.L., Borgers, S., Smith, S.L. & Rowley, J.D. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proceedings of the National Academy of Sciences of the United States of America. 97: 4790-4795 (2000).
Lambert, J.D., Sang, S. & Yang, C.S. Possible controversy over dietary polyphenols: Benefits vs risks. Chemical Research in Toxicology. 20:583-585 (2007).