2016, Number 1
<< Back Next >>
Revista Cubana de Informática Médica 2016; 8 (1)
Intelligent decision-making from medical records stored on the CDA-HL7
Fuentes HIE, Magdaleno GD, García LMM
Language: Spanish
References: 27
Page: 109-124
PDF size: 310.89 Kb.
ABSTRACT
Due to the exponential increase of stored information the organizations, the information society is being overtaken by the need for new methods capable of processing information and ensuring its productive use. This is logically extended to the hospitals, from the widespread use of clinical histories in electronic format. To have systematized information, manage it efficiently and securely is essential to ensure better health practices. In addition, there is the need for standards to support the exchange among health institutions; specifically hl7 has become one of the most widely used because it provides the exchange from xml. In this paper is presented a methodology for the discovery of implicit knowledge in medical records with semi-structured format, using their content and structure. The main results are: (1) the methodology for the clustering of medical records; (2) the interpretation of the results of the clustering to assist diagnostic decision-making; (3) the implementation of the hl7 standard for handling medical records from cda.
REFERENCES
Engelbrecht R. K4Health. Knowledge for Health. Integrating EHR and Knowledge for better health care. Status of the EoI and work items. EUROREC. Berlin. [citado 2002 dic 14]. Disponible en: http://www.eurorec.net/EUROREC_2002_presentations.html
Brau B. Extensible Markup Language(XML) 1.0., in W3C Recommendation. 1998.
C.D M, Raghan P, Schütze H. Introduction to Information Retrieval. 2008 Cambridge University Press.
Zwaanswijk M, Verheij F. J, Wiesman R. D. Benefits and problems of electronic information exchange as perceived by health care professionals: an interview study. BMC Health Services Research, 11:256. Doi:10.1186/1472-6963-11-256. (2011)
Dalamagas T, Cheng T, Winkel K-J, Sellis T. A. Methodology for Clustering XML Documents by Structure. Information Systems (2006).
Dick R. S, Oteen E. B, Detmer D. E. (eds). The computer-based patient record: An essential technology for health care. Revised Edition Washington, D.C: The Nacional Academy Press. 1997. Capítulo 2. p. 74-99. [citado 2002 dic 14]. Disponible en: http://books.nap.edu/books/0309055326/html/R1.html
Gérvas J. La historia clínica electrónica: muchas promesas y pocos hechos. Aten Primaria. 2008;40(Supl 1):13
Guerrini G, Mesiti M, Sanz I. An Overview of Similarity Measures for Clustering XML Documents. 2006.
Wilde E, Glushko R.J. XML fever. Comm. ACM, 2008. 51(7): p. 40-46. doi: 10.1145/1364782.1364795
Wang G. RPE query processing and optimization techniques for XML databases. J. Comput. Sci. Technol, 2004. 19(2): p. 224-237.
Bertino E, Ferrari E. XML and data integration. IEEE Internet Comput, 2001. 5(6): p. 75-76. doi: 10.1109/4236.968835
Algergawy A. XML Data Clustering: An Overview, in ACM Computing Surveys. 2011. doi: 10.1145/1978802.1978804
Kruse R, Döring C, Lesor M.-J. Fundamentals of Fuzzy Clustering, in Advances in Fuzzy Clustering and its Applications, J.V.d. Oliveira and W. Pedrycz, Editors. 2007, John Wiley and Sons: Est Sussex, England. p. 3-27.
Ji T, X Bao, D. Yang. FXProj - A Fuzzy XML Documents Projected Clustering Based on Structure and Content. LNAI 7120, 2011: p. 406-419.
Yousuke W, Hidetaka K , Haruo Y. Similarity search for office XML documents based on style and structure data. International Journal of Web Information Systems, 2013. 9(2): p. 100-117. doi: 10.1108/IJWIS-03-20 13-0005
Kaufman L, Rousseeuw P.J. Finding groups in data: an introduction to cluster analysis. Wiley Series in probability and mathematical statistics. 1990: John Wiley and Sons.
Martín C. Aprendizaje Automático Y Minería De Datos Con Modelos Gráficos Probababilísticos. DEA, Universidad De Granada. 2007
Tekli J.M, Chbeir R. A Novel XML Document Structure Comparison Framework based-on Subtree Commonalities and Label Semantics. Elsevier, 2011. doi: 10.1016/j.websem.2011.10.002
Pinto D, Tovar M, Vilariño D . BUAP: Performance of K-Star at the INEX'09 Clustering Task. in INEX 2009 Workshop Pre-proceedings. 2009. Woodlands of Marburg, Ipswich, Queensland,Australia. doi: 10.1007/978-3-642-14556-8_43
Vries C. Overview of the INEX 2010 XML mining track: clustering and classification of XML documents, in In Lecture Notes in Computer Science, Springer: Amsterdam. 2011
Kurgan L, Swiercz W, Cios K.J. Semantic mapping of xml tags using inductive machine learning. in 11th International Conference on Information and Knowledge Management. 2002. Virginia, USA.
Shin K, Han S.Y. Fast clustering algorithm for information organization., in In:Proc. of the CICLing Conference. 2003, Lecture Notes in Computer Science.Springer-Verlag (2003). p. 619-622. doi: 10.1007/3-540-36456-0_69
MacQueen J.B. Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967: Berkeley, University of California. p. 281-297.
Sim I, Gorman P, Greenes R. A, Haynes R. B, Kaplan B, Lehmann H, Tang P. C. Clinical decision support systems for the practice of evidence-based medicine. J. Am Med Inform Assoc 2001; 8: 527-34.
Xiong H, J, Chen K. K-means clustering versus validation measures: a data distribution perspective. in Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2006). 2006. Philadelphia, PA, USA: ACM Press. doi: 10.1109/TSMCB.2008.2004559
Costa G. Hierarchical clustering of XML documents focused on structural components. Data & Knowledge Engineering, 2013. 84: p. 26-46. doi: 10.1016/j.datak.2012.12.002
Magdaleno D, Fuente sI.E, García M.M. Clustering XML Documents using Structure and Content Based in a Proposal Similarity Function (OverallSimSUX). Computación y Sistemas, 2015.