2005, Number 3
<< Back Next >>
Arch Neurocien 2005; 10 (3)
Immunologic aspects in the parkinson disease
González-Torres LC, Armendáriz-Borunda J
Language: Spanish
References: 51
Page: 168-174
PDF size: 117.61 Kb.
ABSTRACT
Parkinson disease is a neurodegenerative disorder that affects 50/100,000 individuals in Mexico. Parkinson disease is characterized by reduction in dopamine content of the substancia nigra pars compacta resulting
in 1055 of domamine-containing neurons. The postula-ted cause of the disease includes several processes: 1. a growth factor deficiency, such as nerve growth factor and brain-derived neurotrophic factor, cytokines which can prevent and protect neuronal cell death; which may regulate glial phenotype, T lymphocytes and Blympho-cytes functions, and the surviving pathway signals; 2. dysfunction of the ubiquitin-proteasome
system related to the histophatology of this disease; and 3. excitotoxic mechanisms, resulting in information of free radicals and the neuroinflammatory processes leading to autoimmunity or a failing immune response.
REFERENCES
Ratchenson RA, Kiefer SP, Selman WR. Pathophysiology and clinical evaluation of ischemic cerebrovascular disease. En Ratchenson RA, Kiefer SP Y Selman WR, Eds. Neurological Surgery. USA: WB Saunders, 1999.
http://www.ssa.gop.mx/ 19 de octubre de 2004.
McNaught KSP, Olanow CW. Proteolytic stress: a unifying concept for the etiophatogenesis of Parkinson’s disease. Ann Neurol 2003;53(suppI3):S73-S86.
http://www.innn.edu.mx 19 de octubre de 2004.
Hunot S, Hirsch EC. Neuroinflammatory processes in Parkin-son’s disease. Ann Neurol 2003; 53 (suppl 3):549-60.
Gilman S, Winans NS. Ganglios basales. En: Sid Gilman y Sarah Winans Newman. Neuroanatomía y neurofisiología clínicas de Manter y Gatz. México: Editorial El Manual Moderno 1998.
Olanow CW, Tatton WG. Etiology and pathogenesis of Parkin-son’s disease. Annu Rev Neurosci 1999; 22: 123-44.
McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2001; 2(8):589-94.
Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. Autoimmun 2000; 15(3):331-45.
Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5:49-55.
Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998; 4:814-21.
Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M. Neuro-trophins and brain insults. Trends Neurosci 1994; 17:490-6.
Mitsumoto H, Ikeda K, Klinkosz B, Cedarbaum JM, Wong V, Lindsay RM. Arrest of motor neuron disease in wobbler mice cotreated con CNTF and BDNF. Science 1994; 265: 1107-10.
Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy¡ stimulate GAP-43 and T alpha 1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 1997; 17:9583-95.
Kerschenteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 2003; 53:292-304.
Cowan WM, Hamburger V, Levi-Montalcino R. The path to the discovery of nerve growth factor. Annu Rev Neurosci 2001; 24:551600.
Torcia M, Bracci-Laudiero L, Lucibello M, Nencioni L, Labardi D, Rubartelli A, et al. Nerve growth factor is an autocrine survival for memory B Iymphocytes. Cell 1996; 85:345-56.
Otten U, Ehrhard P, Peck R. Nerve growth factor induces growth and differentiation of human B Iymphocytes. Proc Natl Acad Sci USA 1989; 86: 10059-63.
Brodie C, Oshiba A, Renz H, Bradley K, Gelfand EW. Nerve growthfactor and anti-CD40 provide apposite signals for the production of IgE in interleukin-4-treated Iymphocytes. Eur J Immunol 1996; 26: 171-8.
Torcia M, De Chiara G, Nencioni L, Ammendola S, Labardi D, Lucibell M, et al. Nerve growth factor .inhibits apoptosis in memory B lymphocytés via inactivation of p38 MAPK, prevention of BcI-2 phosphorylation¡ and cytochrome crelease. J Biol Chem 2001;276( 42): 39027-37.
Neumann H, Misgeld T, Matsumuro K, Wekerle H. Neurotrophins inhibit major histocompatibility class 11 inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci USA 1998; 95:5779-84.
Villoslada P, Genain CP. Role of nerve growth factor and other trophic factors in brain inflammation. Prog Brain Res 2004; 146:403-14.
Flügel A, Matsumuro K, Newmann H, Kinkert WE, Bimbacher R, Lassmann H, et al. Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 2001; 31: 11-22.
Villoslada P, Hauser SL, Bartke J, Unger J, Heald N, Rosenberg D, et al. Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 2000; 191: 1799-806.
Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC. Immunohistochemical analysis of tumor necrosis factor and its receptors in Parkinson’ s disease. Neurosci Lett 1994; 172:151-4.
Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debre P, et al. FcaRII/Cp23 is expressed in Parkinson’s rdisease and induces, in vitro, production of nitric oxide and tumor necrosis factor-a in glial cells. J Neurosci 1999; 19:3440-7.
Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 2000;60:277-90.
McNaught KS, Jenner P. Dysfunction of rat forebrain astrocytes in culture alters cytokine and neurotrophic factor release. Neurosci Lett 2000;285(1): 61-5.
Mogi M, Togari A, Kondo T, Mizuno Y, Kogure O, Kuno S, et al. Glial cell line-derived neurotrophic factor in the substantia nigra from control and parkinsonian brains. Neurosci Lett 2001;300(3):179-81.
McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progress model of Parkinson’ s disease. Ann Neurol 2004; 56(1): 149-62.
McNaught KS, Bjorklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW. Proteasome inhibition causes nigral degeneration ith inclusion bodies in rats. Neuroreport 2002; 13(11): 1437-41.
McNaught KS, Jenner P. Extracellular accumulation of nitric oxide, hydrogen peroxide and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation. Biochem Pharmacol 2000; 60(7):979-88.
McNaught KS, Jenner P. Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4- phenylpyridinium-and 6-hyd roxydopa mine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J Neurochem 1999; 73(6): 2469-76.
Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, et al. JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 2004;101(2):665-70.
Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, et al. Cyclooxygenase-2 is instrumental in Parkinson ‘ s disease neurodegeneration. Proc Natl Acad Sci USA 2003; 100(9): 5473-8.
McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia negra of Parkinson’ s and Alzheimer’ s disease brains. Neurology 1998; 38: 1285-91.
Mogi M, Harada M, Kondo T, Riederer P, Nagatsu T. Brain beta 2-microglobulin levels are elevated ‘in the striatum in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1995; 9:87-92.
Fiszer U. Does Parkinson’ s disease have an immunological basis? The evidence and its therapeutic implications. Bio Drugs 2001; 15(6): 351-5.
Casals J, Elizan TS, Yahr MD. Postencephalitic parkinsonism-a review. J Neural Transm 1998; 105:645-76.
Takahashi M, Yamada T. A posible role of influenza A virus infection for Parkinson’ s disease. Adv Neurol 2001; 86:91-104.
Ogata A, Tashiro K, Nakuzuma S, Nagashima K, Hall WW. A rat model of Parkinson ‘s disease induced by Japanese encephalitis virus. J Neurovirol 1997; 3:141-7.
Fiszer U, Tomik S, Grzesiowski P, Krygowska-Wajs A, Walory J, Michalowska M, et al. The antibodies against Sordetella pertussis in sera of patients with Parkinson’s disease and other non-neurological diseases. Acta Neurol Scand 2004;110(2):113-7.
McRae Degueurce A, Gottfries CG, Karlsson I, Svennerholm L, Dahlstrom A. Antibodies in the CSF of a Parkinson’ s patient recognizes neurons in rat mesencephalic regions. Acta Physiol Scand 1986;126:313-5.
Carvey PM, McRae A, Lint TF, Ptak LR, Lo ES, Goetz CG, et al. The potential use of a dopamine neuron antibody and a striatal-derived neurotrophic factor as diagnostic markers in Parkinson’s disease. Neurology 1991; 41:53-8.
Defazio G, Dal Toso R, Senvegnu D, Minozzi MC, Cananzi AR, Leon A. Parkinsonian serum carries complement-dependent toxicity for rat mesencephalic dopaminergic neurons in culture. Brain Res 1994;633:206-12.
Rowe DB, Le W, Smith RG, Appel SH. Antibodies from patients with Parkinson’ s disease react with protein modified by dopamine oxidation. J Neurosci Res 1998; 53: 551-8.
Farkas E, De Jong GI, de Vos RA, Jansen Steur EN, Luiten PG. Pathological features of cerebral cortical capillaries are double in Alzheimer’ s disease and Parkinson’ s disease. Acta Neuropathol 2000; 100(4):395-402.
Hayday AC. Rs cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18:975-1026.
Fiszer U, Mix E, Fredrikson S, Kostolas V, Olsson T, Link H. Gamma delta + T cells are increased in patients with Parkinson’s disease. J Neurol Sci 1994; 121:39-45.
Flugel A, Bradl M. New tools to trace populations of inflammatory cells in the CNS. Glia 2001;36(2): 125-36.
Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP. The role of glial reaction and inflammation in Parkinson’s disease. Ann NY Acad Sci 2003;991:214-28.