2016, Number 06
<< Back Next >>
MediSan 2016; 20 (06)
Techniques to control the anesthetic depth levels
Salgado CA, Montoya PA
Language: Spanish
References: 35
Page: 868-881
PDF size: 133.00 Kb.
ABSTRACT
Essential aspects of the classification process of anesthetic depth levels are presented by
means of electroencefalographic signs. The abovementioned process is supported from an
exhaustive study that allowed to specify its main aspects. Finally, a characterization of its
current state is carried out, taking into account the main indexes of anesthetic depth and
types of marketed displays.
REFERENCES
González Victoria A, Cruz Boza R, Cabrera Prats A, Cordero Escobar I, Morales Jiménez EL. Relación entre monitorización del índice de estado cerebral y predictores clínicos de profundidad anestésica. Rev Cuba anestesiol reanim. 2010; 9(3):186-99.
Sinha PK, Koshy T. Monitoring Devices for Measuring the Depth of Anaesthesia – An Overview. Indian J Anaesth. 2007; 51(5):365–81.
Montoya Pedrón A, Marañón Reyes EJ, Rodríguez Aldana Y, Álvarez Rufo CM, Salgado Castillo A. Evaluación de la eficacia de los parámetros del electroencefalograma cuantitativo en la medición del nivel de profundidad anestésico. MEDISAN. 2014 [citado 8 Dic 2015]; 18(3). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192014000300003
Becker K, Schneider G, Eder M, Ranft A, Kochs EF. Anaesthesia monitoring by recurrence quantification analysis of EEG data. Anaesthesia. 2010; 5:1–6.
Silva A, Ferreira DA, Venancio C, Souza AP, Antunes LM. Performance of electroencephalogram – derived parameters in prediction of depth of anaesthesia in a rabbit model. Br J Anaesth. 2011; 106(4):540–7.
Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. PNAS. 2013; 110(12):E1142–51.
Kaskinoro K, Maksimow A, Långsjö J, Aantaa R, Jääskeläinen S, Kaisti K, et al. Wide inter-individual variability of bispectral index and spectral entropy at loss of conciousness during increasing concentrations of dexmedetomidine, propofol, and sevoflurane. Br J Anaesth. 2011; 107(4):573-80.
Kreuzer M, Zanner R, Pilge S, Paprotny S, Kochs EF, Schneider G. Technical communication: Time delay of monitors of the hipnotic component of anesthesia: Analysis of state entropy and index of conciousness. Anesth Analg. 2012; 115(2): 315–9.
Revuelta M, Paniagua P, Campos JM, Fernández JA, Martínez A, Jospin M, et al. Validation of the index of consciousness during sevoflurane and remifentanil anaesthesia: a comparison with the bispectral index and the cerebral state index. Br J Anaesth. 2008; 101(5):653–8.
Dutton RC, Smith WD, Rampil IJ, Chortkoff BS, Eger EI. Forty – hertz midlatency auditory evoked potential activity predicts wakeful response during desflurane and propofol anesthesia in volunteers. Anesthesiology. 1999; 91:1209–20.
Berger H. Uber das elektroenkephalogramm des menschen. III. Mitteilung. Arch Psychiat Nervenkr. 1931; 94:16–60.
Anderson RE, Jakobsson JG. Cerebral state monitor, a new small handheld EEG monitor for determining depth of anaesthesia: a clinical comparison with the bispectral index during day – surgery. Eur J Anaesthesiol. 2006; 23(3):208–12.
Llonch P, Andaluz A, Rodríguez P, Dalmau A, Jensen EW, Manteca X, et al. Assessment of consciousness during propofol anaesthesia in pigs. Veterinary Record. 2011; 169(19):496.
Han-Pang H, Yi-Hung L, Ching-Ping W, Tz-Hau H. Automatic artifact removal in EEG using independent component analysis and one – class classification strategy. JNSNE. 2013; 2(2):73–8.
Anier A, Lipping T, Ferenets R, Puumula P, Sonkajarvi E, Ratsep I, et al. Relationchip between approximate entropy and visual inspection of irregularity in the EEG signal, a comparision with spectral entropy. Br J Anaesth. 2012; 109(6):928–34.
Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology. 2013; 118 (6):1264-75.
Nicolaou N, Hourris S, Alexandrou P, Georgiou J. EEG-based automatic classification of `awake' versus `anesthetized' state in general anesthesia using Granger causality. PLoS One. 2012; 7(3):33869.
Herregods L, Rolly G, Mortier E, Bogaert M, Mergaert C. EEG and SEMG monitoring during induction and maintenance of anesthesia with propofol. International Journal of Clinical Monitoring and Computing. 1989; 6:67–73.
Evans JM, Bithell JF, Vlachonikolis IG. Relationship between lower of esophageal contrability, clinical signs and halothane concentration during general anesthesia and surgery in man. Br J Anaesth. 1987; 59:1346–55.
Sessler DI, Sten R, Olofsson CI, Chow F. Lower esophageal contractility predicts movement during skin incision in patients anesthetized with halothane, but not with nitrous oxide and alfentanil. Anesthesiology. 1989; 70(1):42–6.
Pomfrett CJD, Barric JR, Healy TEJ. Respiratory sinus arrhythmia reflects surgical stimulation during light enflurane anaesthesia. Anesth Analg. 1994; 78:S334.
Kunczik J, Koeny M. Pain and stress measurement during general anesthesia using the respiratory sinus arrhythmia. 2015 [citado 8 Dic 2015]. Disponible en: http://radio.feld.cvut.cz/conf/poster2015/proceedings/Section_BI/BI_051_Kunczik.pdf
Chen X, Tang J, White PF, Wender RH, Ma H, Sloninsky A, et al. A comparison of patient state index and bispectral index values during the perioperative period. Anesth Analg. 2002; 95(6):1669–74.
Tlumak AI, Durrant JD, Delgado RE, Boston JR. Steady-state analysis of auditory evoked potentials over a wide range of stimulus repetition rates: Profile in adults. Intern J Audiol. 2011; 50(7):448-58.
Aho AJ, Lyytikäinen LP, Yli-Hankala A, Kamata K, Jäntti V. Explaining entropy responses after a noxious stimulus, with or without neuromuscular blocking agents, by means of the raw electroencephalografic and electromiographfy characteristics. Br J Anaesth. 2011; 106(1):69-76.
Billard V, Constant I. Analyse automatique de l’électroencéphalogramme: que lintérêt en l’an 2000 dans le monitorage de la profondeur de l’anesthésie? Annales Françaises d' Anesthesie et de Reanimation. 2001:763–85.
Miller A, Sleigh JW, Barnard J, Steyn Ross DA. Does bispectral analysis of the electroencephalogram add anything but complexity? BJA. 2004; 92(1):8–13.
Miller RD. Miller´s Anesthesia. 6 ed. Philadelphia: Elsevier/Churchill Livingstone; 2005.
Rodríguez Y, González T, Marañón E, Montoya A, Sanabria F. Aplicación de la corrección de artefactos en el electroencefalograma para el monitoreo del estado anestésico. Rev Neurol Neurocir. 2015; 5(Supl. 1):S9–S14.
Salgado A, González T, Castañeira AJ. SAM: New Condensed Algorithm. La Habana: UCIENCIA; 2014.
Maynard DE, Jenkinson JL. The cerebral function analysing monitor. Initial clinical experience, application and further development. Anaesthesia. 1984; 39(7):678–90.
Wong CA, Fragen RJ, Fitzgerald P, McCarthy RJ. A comparison of the SNAP II and BIS XP indices during sevoflurane and nitrous oxide anaesthesia at 1 and 1.5 MAC and at awakening. Br J Anaesth. 2006; 97(2):181–6.
Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: The B – Aware randomised controlled trial. Lancet. 2004; 363(9423):1757-63.
Schneider G, Gelb AW, Schmeller B, Tschakert R, Kochs E. Detection of awareness in surgical patients with EEG -based indices-- bispectral index and patient state index. Br J Anaesth. 2003; 91(3):329–35.
Anderson RE, Sartipy U, Jakobsson JG. Use of conventional ECG electrodes for depth of anaesthesia monitoring using the cerebral state index: a clinical study in day surgery. Br J Anaesth. 2007; 98(5):645–8.