2016, Number 2
<< Back
Investigación en Discapacidad 2016; 5 (2)
The revolution in genetic engineering: CRISPR/Cas system
Lammoglia-Cobo MF, Lozano-Reyes R, García-Sandoval CD, Avilez-Bahena CM, Trejo-Reveles V, Muñoz-Soto RB, López-Camacho C
Language: Spanish
References: 59
Page: 116-128
PDF size: 273.67 Kb.
ABSTRACT
CRISPRs (clustered regularly interspaced short palindromic repeat), along with the Cas endonuclease, form the CRISPR/Cas system. The system was discovered as a defense mechanism in bacteria and archaea, in which DNA from a pathogen —such as a bacteriophage— is incorporated between repeated palindromic sequences and later transcribed into an RNA known as crRNA. In a second infection, the crRNA coupled with Cas matches the pathogen’s transcript sequence and Cas silences or degrades the mRNA in a similar mechanism as a silencing RNA (siRNA). Due to its endonuclease activity and its ability to recognize specific sequences, the CRISPR/Cas system has been used in genetic engineering to activate or repress genes, to induce point mutations, and to alter sequences through homologous recombination. CRISPR has also been used to establish accurate models of human disease in mice and to evaluate cellular physiology through the simultaneous activation or repression of various genes. In this review article, we include the mechanism of action of the CRISPR/Cas system, its potential applications in cell and gene therapy, and future perspectives.
REFERENCES
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 11 (9): 636-646.
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010; 186 (2): 757-761.
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987; 169 (12): 5429-5433.
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct. 2006; 1: 7.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315 (5819): 1709-1712.
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011; 471 (7340): 602-607.
Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002; 43 (6): 1565-1575.
Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 2013; 10 (5): 726-737.
Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010; 468 (7320): 67-71.
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011; 39 (21): 9275-9282.
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339 (6121): 819-823.
Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics. 2014; 196 (4): 961-971.
Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 2013; 194 (4): 1029-1035.
He Z, Proudfoot C, Mileham AJ, McLaren DG, Whitelaw CB, Lillico SG. Highly efficient targeted chromosome deletions using CRISPR/Cas9. Biotechnol Bioeng. 2015; 112 (5): 1060-1064.
Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013; 41 (14): e141.
Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013; 4 (1): 220-228.
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol. 2015; 87 (1-2): 99-110.
Richter H, Randau L, Plagens A. Exploiting CRISPR/Cas: interference mechanisms and applications. Int J Mol Sci. 2013; 14 (7): 14518-14531.
Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011; 9 (6): 467-77.
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014; 32 (4): 347-355.
Harrison MM, Jenkins BV, O’Connor-Giles KM, Wildonger J. A CRISPR view of development. Genes Dev. 2014; 28 (17): 1859-1872.
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154 (2): 442-451.
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013; 41 (15): 7429-7437.
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10 (10): 977-979.
Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013; 10 (10): 973-976.
Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development. 2014; 141 (1): 219-223.
Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol. 2015; 33 (1): 102-106.
Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014; 343 (6166): 80-84.
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014; 159 (3): 647-661.
Harms DW, Quadros RM, Seruggia D, Ohtsuka M, Takahashi G, Montoliu L et al. Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet. 2014; 83: 15.7.1-27.
Schmid B, Haass C. Genomic editing opens new avenues for zebrafish as a model for neurodegeneration. J Neurochem. 2013; 127 (4): 461-470.
Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014; 159 (2): 440-455.
Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014; 516 (7531): 423-427.
Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014; 24 (1): 132-141.
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157 (6): 1262-1278.
Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep. 2014; 9 (3): 1151-1162.
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013; 8 (11): 2281-2308.
Zhu LJ, Holmes BR, Aronin N, Brodsky MH. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One. 2014; 9 (9): e108424.
Li M, Suzuki K, Kim NY, Liu GH, Izpisua Belmonte JC. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem. 2014; 289 (8): 4594-4599.
The Jackson Laboratory. Alleles produced for the KOMP project by The Jackson Laboratory. MGI Direct Data Submission. 2012.
Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S et al. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep. 2014; 4: 5635.
Feng Y, Sassi S, Shen JK, Yang X, Gao Y, Osaka E et al. Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system. J Orthop Res. 2015; 33 (2): 199-207.
Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014; 32 (6): 551-553.
Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014; 345 (6201): 1184-1188.
Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013; 13 (6): 653-658.
Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015; 6: 6244.
Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013; 12 (4): 393-394.
Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH. Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Curr Opin Neurol. 2012; 25 (2): 125-130.
Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014; 24 (9): 1526-1533.
Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013; 110 (39): 15644-15649.
Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015; 4 (1): 143-154.
Organización Mundial de la Salud. Estadísticas Sanitarias Mundiales 2014: Una mina de información sobre salud pública mundial. 2014.
Moreu-Burgosa J, Macaya-Miguel C. Fisiopatología del miocardio isquémico. Importancia de la frecuencia cardiaca. Rev Esp Cardiol Supl. 2007; 7 (D):19-25.
Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol. 2005; 46 (7): 1339-1350.
Pan A, Weintraub NL, Tang Y. Enhancing stem cell survival in an ischemic heart by CRISPR-dCas9-based gene regulation. Med Hypotheses. 2014; 83 (6): 702-705.
Sheridan C. First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014; 32 (7): 599-601.
Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013; 31 (9): 839-843.
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32 (6): 569-576.
Li K, Wang G, Andersen T, Zhou P, Pu WT. Optimization of genome engineering approaches with the CRISPR/Cas9 system. PLoS One. 2014; 9 (8): e105779.