2016, Number 2
<< Back Next >>
Revista Cubana de Información en Ciencias de la Salud (ACIMED) 2016; 27 (2)
Searching for drug interactions in MEDLINE with the use of measures of centrality
Gálvez C
Language: Spanish
References: 20
Page: 154-167
PDF size: 871.41 Kb.
ABSTRACT
The paper proposes an approach to the identification and prediction of drug interactions in biomedical literature using measures of centrality. Drug interactions are caused by alterations in the effect of a drug. Health specialists have pharmacological databases at their disposal in which information is provided about such interactions. However, because such databases have a limited scope, biomedical literature continues to be the source of scientific information par excellence. The method used to identify such interactions was based on network analysis and information visualization techniques. Degree, closeness and betweenness metrics were applied to a set of drugs extracted from the database MEDLINE with the purpose of classifying the drugs in the network. The results obtained show that the centrality of betweenness is the most appropriate measure to identify and predict new interactions. The conclusion is that the drug interactions revealed by the procedure proposed could be good candidates for further experimental analysis aimed at verifying their clinical relevance. The procedure could also be used for the content curation of drug databases.
REFERENCES
Stockley I. Interacciones Farmacológicas. Barcelona: Pharma Editores; 2004.
Amariles P, Giraldo NA, Faus MJ. Interacciones medicamentosas: aproximación para establecer y evaluar su relevancia clínica. Med Clín. 2007;129(1):27-35.
Rodríguez-Terol A, Santos-Ramos B, Caraballo-Camacho M, Ollero-Baturone M. Relevancia clínica de las interacciones medicamentosas. Med Clín. 2008;130(19):758-59.
Hansten PD, Horn JR. Drug interactions: analysis and management. St Louis: Facts and Comparisons; 2007.
Lacy CF, Armstrong LL, Goldman MP, Lance LL. Drug information handbook with international trade names index. Lexi-Comp Inc.; 2007.
Medscape. Drug Interaction Checker. 2015 [citado 20 de octubre de 2015]. Disponible en: http://reference.medscape.com/drug-interactionchecker
Thomson Micromedex. Drug Information for the Health Care Professional. 2007 [citado 20 de octubre de 2015]. Disponible en: http://micromedex.com/training
Girona L. Interacciones farmacológicas. Pharmaceutical Care España. 2013;15(3):105.
Gálvez C. Reconocimiento y anotación de nombres de fármacos genéricos en la literatura biomédica. Rev Cubana Inform Cienc Sal. 2012;23(4):326-45.
Minh VL, McCart GM, Tsourounis C. An assessment of free, online drug -drug interaction screening programs (DSP). Hospital Pharmacy. 2003;38(7):662-8.
MEDLINE. EE.UU. Nacional Library of Medicine. 2015 [citado 20 de octubre de 2015]. Disponible en: https://www.nlm.nih.gov
Wasserman S, Faust K. Social network analysis: Methods and applications. New York: Cambridge University Press; 1994.
Freeman LC. A set of measures of centrality based on betweenness. Sociometry. 1997;40:35-41.
Hanneman RA, Riddle M. Introduction to social network methods. Riverside: University of California Press; 2005.
Newman MEJ. The structure and function of complex networks. SIAM Review. 2003;45:167-256.
Freeman LC. Centrality in social networks: conceptual clarification. Social Networks. 1979;1:215-39.
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;6:361-2.
Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-38.
Waltman L, Van Eck NJ, Noyons ECM. A unified approach to mapping and clustering of bibliometric networks. J Informetr. 2010;4(4):629-35.
Everitt B. Cluster Analysis. New York: Halsted Press; 1980.