2016, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2016; 19 (1)
Calcitic and aragonitic seas: effects on reef building organisms over time
Sánchez-Beristain F, García-Barrera P, Calvillo-Canadell L
Language: Spanish
References: 50
Page: 45-53
PDF size: 478.78 Kb.
ABSTRACT
The chemistry of the oceans has changed over the passage of geological time. Specifically, changes are
recognized in the salt composition thereof, and in particular secular variations alternating between low
magnesium calcite (LMC) and aragonite / high magnesium calcite (HMC) as the predominant polymorph
of calcium carbonate. A calcitic sea, where LMC is precipitated, is associated with high rates of oceanic
expansion, as well as with high levels of CO
2 in the atmosphere and a global greenhouse effect. Chemically,
it is related to an Mg / Ca ‹2. Meanwhile, in an ocean where Mg / Ca is usually› 2, aragonite or HMC are
preferably precipitated. This type of “seas” are related to low oceanic expansion rates and also to lower
atmospheric CO
2 levels in comparison with calcitic seas. Furthermore, aragonitic seas are usually related to
“icehouse effect” episodes.
The changes in the chemistry of the oceans affects the organisms that inhabit them, and in particular, in
reef-building organisms such as such as sponges, corals and coralline algae, among others. Fossils found in a
calcitic interval are characterised by a LMC mineralogy, whereas those found in an aragonitic interval, have a
mineralogy consisting either of aragonite/HMC. Nonetheless, it is interesting to pinpoint that both mineralogies
can appear in a same clade, if this clade is encompassed in a succession of calcitic-aragonitic intervals.
REFERENCES
Schneider, R.R., Schulz, H. & Hensen, C. in Marine Geochemistry (eds. Schulz, H.F., Zabel, M.) 311–337. (Springer, Berlin- Heidelberg, 2006).
Tucker, M. E. & Wright, V.P. Carbonate Sedimentology. (Blackwell Science, Oxford, 1991).
Albarède, F. Geochemistry – An introduction. (Cambridge University Press, Cambridge, 2003).
Sandberg, P. A. An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305, 19–22 (1983).
Wilkinson, B.H., Owen, R.M., & Carroll, A.R. Submarine hydrothermal weathering, global eustacy, and carbonate polymorphism in phanerozoic marine oolites. J Sediment Petrol 55, 171 – 183 (1985).
Wilkinson, B.H. & Given, K.R. Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios. J Geol 94 (3), Figura 5. Comportamiento de la proporción Mg/Ca y de la cantidad de CO2 disuelto en la atmósfera y el mar durante diferentes tasas de expansión del piso oceánico. A mayor tasa de expansión, la proporción Mg/Ca es más baja, y la cantidad de CO2 en los reservorios es mayor. Esto favorece la precipitación de la LMC. Por el contrario, a menor tasa de expansión del piso oceánico, aumenta la proporción Mg/ Ca y disminuye la cantidad de CO2 en los reservorios, lo cual favorece la precipitación de aragonita y la HMC. Cortesía del Prof. Mark Wilson (Wooster, EE.UU.) (Ver texto para mayores detalles). 321–333 (1986).
Palmer, T.J., Hudson, J.D. & Wilson, M.A. Palaeoecological evidence for early aragonite dissolution in ancient calcite seas”. Nature 335 (6193), 809–810 (1988).
Umran Dogan, A., Ozsan, A., Dogan, M., Karpuz, C. & Brenner, R.L. Classifications of hardgrounds based upon their strength properties. Carbonate Evaporite 21 (1), 14-20 (1988).
Flügel, E. Microfacies of carbonate rocks. (Springer, Berlin- Heidelberg, 2010).
Wilson, M.A., & Palmer, T.J. A carbonate hardground in the Carmel Formation (Middle Jurassic, SW Utah, USA) and its associated encrusters, borers and nestlers. Ichnos 3 (2), 79-87 (1993).
Palmer, T.J. Cambrian to Cretaceous changes in hardground communities. Lethaia 15 (4), 309–323 (1982).
Sandberg, P.A. New interpretations of Great Salt Lake ooids and of ancient nonskeletal carbonate mineralogy. Sedimentology 22, 497-537 (1975).
Lasemi, Z., & Sandberg, P.A. Linked cyclic changes in Phanerozoic ocean atmosphere composition and original mineralogy of micritic limestones. Geol Soc America, Abs with Programs 32, A68 (2000).
Lowenstein, T.K., Timofeef, M.N., Brennan, S.T., Hardie, L. & Demicco, R.V. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086-1088 (2001).
Palmer, T.J. & Wilson, M.A. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia 37 (4), 417–427 (2004).
Leitmeier, H. Zur Kenntnis der carbonate. II Teil. N Jb Mineral, Beilageband 40, 655-700 (1915).
Lippman, F. Versuche zur Aufklarung der Bildungsbedingungen von Calcit und Aragonit. Fortsch Mineral 38, 156 – 161 (1960).
Folk, R.L. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. J Sediment Petrol 44, 40-53 (1974).
Müller, G., Irion, G. & Förstner, U. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59, 158-164 (1972).
Füchtbauer, H. & Hardie, L.A. Comparison of experimental and natural magnesian calcites. Int Assoc Sed Meeting Abs, Bochum: 167-169 (1980).
Ries, J.B., Anderson, M.A. & Hill, R.T. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time. Geobiology 6 (2), 106–119 (2008).
Ries, J.B. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795-2849 (2010).
Cuif, J.-P., Dauphin, Y. & Sorauf, J.E. Biomineralisation and fossils through time (Cambridge University Press, Cambridge, 2011).
Misra, K.C. Introduction to Geochemistry: Principles and Applications. (Wiley-Blackwell, Oxford, 2012).
Página Web del William Pengelly Cave Studies Trust Museum; “Aragonite”. (http://www.pengellytrust.org/museum/ aragonite.htm). Consultada el 28-VIII-2015.
Lowenstein, T. K., Timofeeff, M. N., Kovalevych, V. M. & Horita, J. The major-ion composition of Permian seawater. Geochim Cosmochim Ac 69, 1701–1719 (2005).
Ries, J.B., Stanley, S.M. & Hardie, L.A. Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. Geology 34, 525-528 (2006).
James, N.P. & Jones, B. Origin of carbonate sedimentary rocks. (Wiley, Oxford, 2015).
Veizer, J. & Mackenzie, F.T. 2014. in Treatise on Geochemistry (2nd edition) (eds. Holland, H.D:, Turekian, K.K. & Mackenzie, F.T.) 399-435. (Elsevier, Amsterdam, 2014).
Mackenzie, F.T. & Pigott, J.D. Tectonic controls of Phanerozoic sedimentary rock cycling. J Geol Soc London 138 (2), 183–196 (1981).
Lee, J. & Morse, J. W. Influences of alkalinity and pCO2 on CaCO3 nucleation from estimated Cretaceous composition sea-water representative of “calcite seas”. Geology 38, 115–118 (2010).
Balthasar, U. & Cusack, M. Aragonite-calcite seas--quantifying the gray area. Geology 43(2), 99-102 (2015).
Fischer, A.G. Long-term climatic oscillations recorded in stratigraphy. In Berger, W. (ed.). Climate in Earth History. National Research Council, Studies in Geophysics (Washington, DC: National Academy Press, 1982) pp. 97–104.
IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). McNaught, A. D. & Wilkinson, A. (comp). Blackwell Scientific Publications, Oxford (1997). Versión en línea por Nic, M., Jirat, B., Kosata, B. (http://goldbook.iupac. org). Actualizado el 24-02-2014 (Jenkins, A.). Consultado el 31-07-2015.
Morse, J.W., Arvidson, R.S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem Rev 107, 301-319 (2007).
Morse, J.W., Wang, Q. & Tsio, M.Y. Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater. Geology 25 (1), 85-87 (1997).
Wilkinson, B.H. Biomineralization, paleooceanography, and the evolution of calcareous marine organisms. Geology 7 (11), 524–527 (1979).
Stanley, S.M. & Hardie, L.A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr Palaeoclimatol Palaeoecol 144, 3–19 (1998).
Stanley, S.M. & Hardie, L.A. Hypercalcification; paleontology links plate tectonics and geochemistry to sedimentology. GSA Today 9, 1–7 (1999).
Porter, S.M. Seawater chemistry and early carbonate biomineralization. Science 316 (5829), 1302–1304 (2007).
García-Barrera, P. in Studies on Mexican Palaeontology (eds. Vega, F.J. et al.) 61-78. (Springer, Berlin-Heidelberg, 2006).
Taylor, P.D. in Origin and Evolution of Natural Diversity, Proceedings of International Symposium “The Origin and Evolution of Natural Diversity” (eds. Okada, H., Mawatari, S.F., Suzuki, N. & Gautam, P.) 21–29 (Hokkaido University Press, Sapporo, 2007).
Fagerstrom, J.A. The evolution of reef communities. (John Wiley & Sons, New York, 1987).
Kremer, B., Kazmierczak, J., Lukomska-Kowalczyk, M. & Kempe, S. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou’s Caldera Lakes (Tonga) and Implications for the Early Fossil Record. Astrobiology 12(6), 535–548 (2012).
Vinn O. & Zatoń M. Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenetic evidences. Carnets Géol 2012/03, 39-47 (2012).
Reitner, J. “Coralline Spongien”. Der Versuch einer phylogenetisch- taxonomischen Analyse. Berliner geowiss Abh E (1), 1-352 (1992).
Fagerstrom, J.A. Reef-building guilds and a checklist for determining guild membership: A new approach for the study of communities. Coral Reefs 10, 47-52 (1991).
Goffredo, S., et al. The puzzling presence of calcite in skeletons of modern solitary corals from the Mediterranean Sea. Geochim Cosmochim Ac 85, 187–199 (2012).
Higuchi, T., et al. Biotic Control of Skeletal Growth by Scleractinian Corals in Aragonite–Calcite Seas. PLoS One 9, e91021, doi:10.1371/journal.pone.0091021, (2014).
Foster, T., & Clode, P.L. Skeletal mineralogy of coral recruits under high temperature and pCO2. Biogeosciences Discuss 12, 12485-12500 (2015).