2016, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2016; 19 (1)
The BarA/UvrY-CsrA regulatory circuitry in Escherichia coli and others γ-proteobacteria
Camacho MI, Georgellis D, Álvarez AF
Language: Spanish
References: 76
Page: 15-23
PDF size: 668.11 Kb.
ABSTRACT
The BarA/UvrY two-component system of
Escherichia coli directly activates the expression of the small noncoding
RNAs CsrB and CsrC. These small RNAs function as antagonist of the CsrA activity, which regulates the
translation of numerous target mRNAs. The BarA/UvrY-CsrA circuitry is conserved in the γ-proteobacteria and
although the mechanism of action is preserved, there are important functional differences that represent
the particular requirements of each bacterial species. In this review we compare the strategies that different
bacterial species employ in order to carry out the regulation of the above circuitry in function of their life style.
REFERENCES
Robinson, V.L., Buckler, D.R. & Stock, A.M. A tale of two components: a novel kinase and a regulatory switch. Nat. Struct. Biol. 7,626–633 (2000).
Stock, A.M., Robinson, V.L. & Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 69:183-215 (2000).
Beier, D., & Gross, R. Regulation of bacterial virulence by twocomponent systems. Curr. Opin. Microbiol. 9:143-152 (2006).
Lapouge, K., Schubert, M., Allain, F.H. & Haas, D. Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol. 67: 241–253 (2008).
Heroven, A.K., Böhme, K. & Dersch, P. The Csr/Rsm system of Yersinia and related pathogens. RNA Biology 9: 379-391 (2012).
Mercante, J., Suzuki, K., Cheng, X., Babitzke, P. & Romeo, T. Comprehensive alanine-scanning mutagenesis of Escherichia coli CsrA defines two subdomains of critical functional importance. J. Biol. Chem. 281: 31832–31842 (2006).
Schubert, M., et al. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat. Struct. Mol. Biol. 14: 807–813 (2007).
Vakulskas, C.A., Potts, A.H., Babitzke, P., Ahmer, B.M. & Romeo, T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. 79:193–224 (2015).
Nagasawa, S., Tokishita, S., Aiba, H. & Mizuno, T. A novel sensorregulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli. Mol. Microbiol. 6: 799-807 (1992).
Zhang, J.P. & Normark, S. Induction of gene expression in Escherichia coli after pilus-mediated adherence. Science 273: 1234–1236 (1996).
Mukhopadhyay, S., Audia, J.P., Roy, R.N. & Schellhorn, H.E. Transcriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is dependent on BarA, a probable two-component regulator. Mol. Microbiol. 37: 371–381 (2000).
Pernestig, A.K., Normark, S.J., Georgellis, D. & Melefors, O. The role of the AirS two-component system in uropathogenic Escherichia coli. Adv. Exp. Med. Bio.l 485: 137–142 (2000).
Pernestig, A.K., Melefors, O. & Georgellis, D. Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J. Biol. Chem. 276: 225-231 (2001).
Suzuki, K., et al. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol. 184: 5130–5140 (2002).
Weilbacher, T., et al. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol. 48: 657–670 (2003).
Babitzke, P., Baker, C.S. & Romeo, T. Regulation of translation initiation by RNA binding proteins. Annu. Rev. Microbiol. 64: 27-44 (2009).
Zere, T.R., et al. Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems. PLoS ONE 10(12): e0145035 (2015).
Martínez, L.C., et al. In silico identification and experimental characterization of regulatory elements controlling the expression of the Salmonella csrB and csrC genes. J. Bacteriol. 196: 325-336 (2014).
Valverde, C., Heeb, S., Keel, C. & Haas, D. RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol. Microbiol. 50: 1361-1379 (2003).
Kay, E., Dubuis, C. & Haas, D. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc. Natl. Acad. Sci. USA 102: 17136– 17141 (2005).
Thomason, M.K., Fontaine, F., De Lay, N. & Storz, G. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84: 17–35 (2012).
Jorgensen, M.G., Maureen, K.T., Havelund, J., Valentin-Hansen, P. & Stortz, G. Dual function of the McaS small RNA in controlling biofilm formation. Genes & Dev. 27: 1132-1145 (2013).
Chávez, R.G., Álvarez, A.F., Romeo, T. & Georgellis, D. The physiological stimulus for the BarA sensor kinase. J. Bacteriol. 192: 2009–2012 (2010).
Lawhon, S.D., Maurer, R., Suyemoto, M. & Altier, C. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 46: 1451-1464 (2002).
Takeuchi, K., et al. Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. J. Biol. Chem. 284: 34976–34985 (2009).
Goodman, A.L., et al. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev. 23: 249-259 (2009).
Ventre, I., et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl. Acad. Sci. USA 103: 171-176 (2006)
Workentine, M.L., Chang, L., Ceri, H. & Turner, R.J. The GacSGacA two-component regulatory system of Pseudomonas fluorescens: a bacterial two-hybrid analysis. FEMS Microbiol. Lett. 292: 50-56 (2009).
Kong, W., et al. Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Mol. Microbiol. 88: 784 –797 (2013).
Hsu, J.L., Chen, H.C., Peng, H.L. & Chang, H.Y. Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J. Biol. Chem. 283: 9933-9944 (2008).
Bordi, C., et al. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol. Microbiol. 76: 1427-1443 (2010).
Camacho, M.I., et al. Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. J. Bacteriol. 197: 983-991 (2015).
Dalebroux, Z.D. & Swanson, M.S. ppGpp magic beyond RNA polymerase. Nat. Rev. Microbiol. 10: 203–12 (2010).
Potrykus, K. & Cashel, M. (p)ppGpp: still magical? Annu. Rev. Microbiol. 62: 35–51 (2008).
Haugen, S.P., Ross, W. & Gourse, R.L. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nature Rev. Microbiol. 6: 507–519 (2008).
Hammer, B.K., Tateda, E.S. & Swanson, M.S. A two-component regulator induces the transmission phenotype of stationaryphase Legionella pneumophila. Mol. Microbiol. 44: 107-118 (2002).
Jonas, K. & Melefors, O. The Escherichia coli CsrB and CsrC small RNAs are strongly induced during growth in nutrient-poor medium. FEMS Microbiol. Lett. 209: 80-86 (2009).
Edwards, A.N., et al. Circuitry linking the Csr and stringent response global regulatory systems. Mol. Microbiol. 80: 1561–1580 (2011).
Jonas, K., Tomenius, H., Römling, U., Georgellis, D. & Melefors, O. Identification of YhdA as a regulator of the Escherichia coli carbon storage regulation system. FEMS Microbiol. Lett. 264: 232-237 (2006).
Suzuki, K., Babitzke, P., Kushner, S.R. & Romeo, T. Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev. 20: 2605-2617 (2006).
Pickering, B.S., Smith, D.R. & Watnick, P.I. Glucose-specific enzyme IIA has unique binding partners in the Vibrio cholerae biofilm. mBio 3(6): e00228 –12 (2012).
Gudapaty, S., Suzuki, K., Wang, X., Babitzke, P. & Romeo, T. Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J. Bacteriol. 183: 6017-6027 (2001).
Leng, Y., et al. Regulation of CsrB/C sRNA decay by EIIAGlcof the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol. Microbiol. (2015). Oct 28. [Epub ahead of print].
Sorger-Domenigg, T., Sonnleitner, E., Kaberdin, V.R. & Bläsi, U. Distinct and overlapping binding sites of Pseudomonas aeruginosa Hfq and RsmA proteins on the non-coding RNA RsmY. Biochem. Biophys. Res. Commun. 352: 769-773 (2007).
Sonnleitner, E. & Bläsi, U. Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet. 10: e1004440 (2014).
Altier, C., Suyemoto, M., Ruiz, A.I., Burnham, K.D. & Maurer, R. Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol. Microbiol. 35: 635–646 (2000).
Heroven, A.K., Böhme, K., Rohde, M. & Dersch, P. A Csrtype regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol. Microbiol. 68: 1179-1195 (2008).
Dillon, S. & Dorman, C. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbioly 8: 185-195 (2010).
Ali, B.M., Amit, R. & Stavans, J. Compaction of single DNA molecules induced by binding of integration host factor (IHF). Proc. Natl. Acad. Sci. USA 98: 10658–10663 (2001).
Dorman, C.J. H-NS: A universal regulator for a dynamic genome. Nat. Rev. Microbiol. 2: 391-400 (2004).
Fang, F.C. & Rimsky, S. New insights into transcriptional regulation by H-NS. Curr. Opin. Microbiol. 11: 113-120 (2008).
Browning, D.F, & Busby, S.J.W. The regulation of bacterial transcription initiation. Nat. Rev. Microbioly 2: 57-65 (2004).
Gunasekera, A., Ebright, Y.W. & Ebright, R.H. DNA sequence determinants for binding of the Escherichia coli catabolite gene activator protein. J. Biol. Chem. 21: 14713-14720 (1992).
Grainger, D.C., Hurd, D., Harrison, M., Holdstock, J. & Busby, S.J.W. Studies of the distribution of Escherichia coli cAMPreceptor protein and RNA polymerase along the E. coli chromosome. Proc. Natl. Acad. Sci. USA 102: 17693-17698 (2005).
Humair, B., Wackwitz, B. & Haas, D. GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. Appl. Environ. Microbiol. 76: 1497-1506 (2010).
Pitre., C.A., Tanner, J.R., Patel, P. & Brassinga, A.K.C. Regulatory control of temporally expressed integration host factor (IHF) in Legionella pneumophila. Microbiology 159: 475-492 (2013).
Brénic, A., et al. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73: 434–445 (2009).
Queiroz, M.H., Madrid, C., Paytubi, S., Balsalobre, C. & Juárez, A. Integration host factor alleviates H-NS silencing of the Salmonella enterica serovar Typhimurium master regulator of SPI1, hilA. Microbiology 157: 2504-2514 (2011).
Stonehouse, E., Kovacikova, G., Taylor, R.K. & Skorupski, K. Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J. Bacteriol. 190: 4736-4748 (2008).
Ogasawara, H., Yamada, K., Kori, A., Yamamoto, K. & Ishihama, A. Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology 156: 2470- 2483 (2010).
Stoebel, D.M., Free, A. & Dorman, C.J. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 154: 2533–2545 (2008).
Iost, I., Bizebard, T. & Dreyfus, M. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. Biochim. Biophys. Acta 1829: 866–877 (2013).
Vakulskas, C.A., et al. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures. Mol. Microbiol. 92: 945-958 (2014).
Burrowes, E., Baysse, C., Adams, C. & O’Gara, F. Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152: 405-418 (2006).
Pessi, G., et al. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J. Bacteriol. 183: 6676-6683 (2001).
Morris, E.R., et al. Structural rearrangement in an RsmA/CsrA ortholog of Pseudomonas aeruginosa creates a dimeric RNAbinding protein, RsmN. Structure 21: 1659–1671 (2013).
Molofsky, A.B. & Swanson, M.S. Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol. Microbiol. 50: 445–461 (2003).
Abbott, Z.D., Yakhnin, H., Babitzke, P. & Swanson, M.S. csrR, a paralog and direct target of CsrA, promotes Legionella pneumophila resilience in water. mBio 6(3):e00595-15 (2015).
Marden, J.N., et al. An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 110: 15055–15060 (2013).
Yakhnin, H., et al. CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol. Microbiol. 64: 1605–1620 (2007).
Mukherjee, S., et al. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol. Microbiol. 82: 447–461 (2011).
Yakhnin, A.V., et al. CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol. Microbiol. 87: 851-866 (2013).
Kulkarni, P.R., Cui, X., Williams, J.W., Stevens, A.M. & Kulkarni, R.V. Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic. Acids Res. 34: 3361–3369 (2006).
Reimmann, C., Valverde, C., Kay, E. & Haas, D. Posttranscriptional repression of GacS/GacAcontrolled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J. Bacteriol. 187: 276-285 (2005).
Sonnleitner, E., Schuster, M., Sorger-Domeingg, T., Greenberg, E.P. & Bläsi, U. Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in seudomonas aeruginosa. Mol. Microbiol. 59: 1542-1558 (2006).
Cui, Y., Chatterjee, A. & Chatterjee A.K. Effects of the twocomponent system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpin Ecc. Mol. Plant-Microbe Interact. 14: 516–526 (2001).