2016, Número 1
Siguiente >>
TIP Rev Esp Cienc Quim Biol 2016; 19 (1)
Biosorción de Cd, Cr, Mn y Pb de soluciones acuosas industriales por cepas de Bacillus sp aisladas de lodos activados
García R, Campos J, Cruz JA, Calderón ME, Raynal ME, Buitrón G
Idioma: Ingles.
Referencias bibliográficas: 31
Paginas: 5-14
Archivo PDF: 608.98 Kb.
RESUMEN
Los microorganismos tienen capacidad de acumular metales pesados como agentes bioadsorbentes
ofreciendo una alternativa para la remoción de metales tóxicos en aguas de efluentes industriales. El objetivo
del presente trabajo fue aislar e identificar bacterias tolerantes a los metales pesados (Cd, Cr, Mn y Pb) de lodos
activados provenientes de la planta de tratamiento de agua del Municipio de Santa Rosa Jáuregui, Querétaro.
Para seleccionar las bacterias que son tolerantes a los metales se aislaron 37 cepas bacterianas de las cuales
se seleccionaron la Cepa-13 y Cepa-16 (C-13 y C-16), que presentaron una máxima capacidad de adsorción
para los metales estudiados. En este artículo, el término biosorción describe la remoción de contaminantes y
la utilización de biomasas (muerta) mediante mecanismos fisicoquímicos como el proceso de adsorción o de
intercambio iónico. Para obtener las condiciones de máxima adsorción se aplicó un tratamiento alcalino y
uno ácido. La capacidad de adsorción fue menor en medio ácido que el bioadsorbente con tratamiento
alcalino. Una segunda etapa del estudio fue la biosorción de metales pesados (Cd, Cr, Mn, y Pb) utilizando
las biomasas muertas de
Bacillus sp (cepa C13 y C16) aisladas de los lodos activados de la primera etapa.
REFERENCIAS (EN ESTE ARTÍCULO)
Beveridge, T.J. & Murray, R.G. Sites of metal deposition in the cell wall of Bacillus subtilis. Journal Bacteriol. 141, 876-887 (1980).
Bem, H., Gallorini, M., Rizzio, E. & Krzeminska, M. Italy Environmental Comparative studies on the concentrations of some elements in the urban air particulate matter in Lodz City of Poland and Milan. Pollution 29, 423–428 (2003).
Moreno-Sánchez, R., Saavedra, E., Mendoza-Cózatl, D. & Rodríguez- Enríquez, S. El análisis de control de flujo como herramienta en la manipulación de vías metabólicas. Mensaje Bioquímico Vol. XXIX. Facultad de Medicina, UNAM. 181-123 (2005).
Callender, E. Heavy metals in the environment-historical trends. Environmental Geochemistry 9, 67–105 (2004).
Azza, M., et al. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal of Advanced Research 4, 367–374 (2013).
Davis, T.A., Volesky, B. & Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Research 37, 4311-4330 (2003).
Moyo, M. & Chikazaza, L. Bioremediation of Lead (II) from Polluted Wastewaters Employing Sulphuric Acid Treated Maize Tassel Biomass, Scientific Research 4, 689-695 (2013).
Regine, H.S., Vieira, F. & Volesky, B. A solution to pollution. International Microbiology Biosorption 3, 17-24 (2000).
García, L. et al. Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere. 90(11), 2654–2661 (2013).
Weisburg, W.G., Barns, S.M., Pelletier, D.A. & Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology. 173(2), 697–703 (1991).
Benson, N.U., Udosen, E.D. & Akpabio, O. Interseasonal distribution and partitioning of heavy metals in subtidal sediment of Qua Iboe Estuary and associated Creeks, Niger Delta (Nigeria). Environmental Monitoring and Assessment. 146(1), 253-265 (2008).
Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).
Stephen, F.A., Warren, G., Webb, M., Eugene, W.M. & David. J.L. Basic Local Alignment Search Tool. Journal of Molecular Biology. 215, 697–703 (1990).
Dennis A.B., et al. Nucleic Acids Research. D36–D42. Journal List Nucleic Acids. Resv.41(Database issue); D36-D42 (2013).
Julie, D.T., Desmond, G.H. & Toby, J G. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. 22, 4673-4680 (1994).
Tamura., K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology Evolution. 30(12), 2725–2729 (2013).
Larkin, M.A. et al. Sequence analysis. Clustal W and Clustal X version 2.0. Bioinformatics Applications Note. 23(21), 2947– 2948 (2007).
Wang, et al. Biosorption of heavy metals by Saccharomyces cerevisiae. A review. Biotech. 24, 427–451 (2006).
Imamoglu, M. Removal of Copper (II) and Lead (II) ions from Aqueous Solution by Adsorption on activated Carbon from a New precursor Hazelhut Husks. Desalination. 228, 108-113 (2008).
Velásquez, L. Biosortion and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Material. 167, 713-716 (2009).
Huang, C. & Huang, C.P. Application of Asper-gillusnigerand Rhizopusoryzaefor Cu (II) removal.Water Research. 30, 1985-1990 (1996).
Volesky, B. Sorption and Biosorption. Montreal-St. Lambert, Quebec, Canada, BV Sorbex Inc. (2003).
Vijayaraghavan, K. & Uum, Y.S. Biosorption of C.I. Reactive Black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes Pig. 76, 726-732 (2008).
Bezverbnaya, et al. Metal-Resistant heterotrophic Bacteria in Coastal Waters of primorye. Russian Journal of Marine Biology 31, 73-77 (2005).
Xiang Liua, B. & Duu-Jong, L. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters. Bioresource Technology 160, 24–31 (2014).
Vázquez, V.R. Bioadsorción de metales pesados en solución acuosa mediante biomasa bacteriana muerta. Tesis de Licenciatura de Biología. Departamento de Química y Biología, Escuela de Ciencias, Universidad de las Américas, Puebla, México, 1-76 (2005).
Torres, R.A. & Juviña, P.J. Desarrollo e implementación de un sistema de monitorización mediante sensores químicos de un proceso de biosorción para la recuperación de ion cobre (II) en efluentes acuosos. Universidad Politécnica de Catalunya (2005).
Krishnani, K., Meng, X., Christodoulatos, C. & Boddu, V.M. Biosortion mechanism of nine different heavy metals onto biomatrix from rice husk. Journal Hazard. Mater. 153, 1222- 1234 (2008).
Wankasi, et al. Removal of heavy metal ions wastewater by chemically modified plants wastes as adsorbents: A review. Biosorption Technology 99, 3935-3948 (2008).
Vieira, R.H.S.F. & Volesky, B. Biosorption: a solution to pollution? International Microbiology 3, 17-24 (2000).
Selvaraj, R., Younghun, K, Cheol Kyun, J. & Jongheop, Y. Science. Comment on removal of cooper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium. Colloid and Interface 276, 255- 258 (2004).