2016, Number 1
<< Back
Salud Mental 2016; 39 (1)
Neurobiología de la depresión mayor y de su tratamiento farmacológico
Cruzblanca HH, Lupercio CP, Collas AJ, Castro RE
Language: Spanish
References: 116
Page: 47-58
PDF size: 725.12 Kb.
ABSTRACT
Introduction
The major depressive disorder (MDD) arises from the interaction of
environmental, genetic and epigenetic factors, producing a deficit in
monoaminergic transmission within the brain. However, our understanding
of its pathophysiology is quite limited.
Objective
To reach an integrative view of the MDD pathophysiology, as well as
the mechanisms of action of antidepressant drugs.
Method
We used the PubMed database to search for the documents by using
the appropriate key words. Most of them are experimental research
and molecular genetics and brain imaging studies in humans.
Results
The pathophysiology of MDD is characterized by: i) shrinkage of the
cingulate anterior cortex; ii) hyper-metabolism of the Cg25 area; iii)
lower expression of the 5-HT
1A receptor; iv) enhanced expression of
monoamine oxidase A. Besides, certain gene polymorphisms are
strongly linked to the pathophysiology, and there is evidence that
5-HT
1A receptor expression is reduced by psychological stress. Antidepressants
reverse the hyper-metabolic state of Cg25, stimulate
neurogenesis and the cAMP pathway. We found that imipramine increases
and reduces the expression of G
αs and G
αs, respectively (data
no published).
Discussion and conclusion
The disruption in monoaminergic transmission could be mediated by:
i) the G1463A hTPH2 polymorphism that reduces the serotonin synthesis;
ii) the C(-1019)G 5-HT
1A polymorphism that increases the receptor
expression in the dorsal rafe, and reduces serotonin release; iii) an increase
in monoamine degradation. The reduced 5-HT
1A expression is
discussed considering its inhibitory properties in the prefrontal cortex.
The effects of imipramine on G
αs and G
αs are in agreement with the
antidepressant-induced stimulation of the cAMP pathway.
REFERENCES
Albert PR, Benkelfat C, Descarries L. The neurobiology of depression: revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Phil Trans R Soc B 2012;367:2378-2381.
Lee S, Jeong J, Kwak Y, Park SK. Depression research: where are we now? Molecular Brain 2010;3:1-10.
Hyman SE. A glimmer of light for neuropsychiatric disorders. Nature 2008;455:890-893.
Murray CJ, Lopez AD. Evidence-based health policy-lessons from the global burden of disease. Science 1996;274:740-743.
Belló M, Puentes-Rosas E, Medina-Mora ME, Lozano R. Prevalencia y diagnóstico de depresión en población adulta en México. Salud Pública Méx 2005; 47(supl1):s4-s11.
Benjet C, Borges G, Medina-Mora ME, Fleiz-Bautista C et al. La depresión con inicio temprano: prevalencia, curso natural y latencia para buscar tratamiento. Salud Pública Méx 2004;46:417-424.
Belmaker RH, Agam G. Major depressive disorder. N Engl J Med 2008;358:55-68.
Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes of major depression. Neuropsychopharmacology 2004;29:1765-1781.
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008;455:894-902.
Mill J, Petronis A. Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry 2007;12:799-814.
Bissette G, Klimek V, Pan J, Stockmeier C et al. Elevated concentration of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology 2003;28:1328-1335.
Brown ES, Varghese FP, McEwen BS. Association of depression with medical illness: Does cortisol play a role? Biol Psychiatry 2004;55:1-9.
Wong M-L, Kling MA, Munson PJ, Listwak S et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: Relation to hypercortisolism and corticotropin- releasing hormone. Proc Natl Acad Sci USA 2000;97:325-330.
Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000;23:477-501.
Campbell S, MacQueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 2004;29:417- 426.
Drevest WC, Gadde KM, Krishnan RR. Neuroimaging studies of mood disorders. En: Charney DS, Nestler EJ (eds). Neurobiology of mental illness. Nueva York: Oxford University Press; 2004; pp.461-490.
MacMaster FP, Kusumakar V. Hippocampal volume in early onset depression. BMC Med 2004;2:1-6.
MacQueen GM, Campbell S, McEwen BS, Macdonald K et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 2003;100:1387-1392.
Sheline YI, Sanghavi M, Mintun MA, Gado MH. Depression duration but no age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999;19:5034- 5043.
Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: A meta-analysis. Am J Psychiatry 2004;161:598-607.
Neumeister A, Wood S, Bonne O, Nugent AC et al. Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 2005;57:935-937.
Shenton ME, Kikinis R, Jolesz FA, Pollak SD et al. Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med 1992;327:604-612.
Maletic V, Robinson M, Oakes T, Iyengar S et a. Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 2007;61:2030-2040.
Hajek T, Kozeny J, Kopecek M, Alda M et al. Reduced subgenual cingulate volumes in mood disorders: a meta-analysis. J Psychiatry Neurosci 2008;33:91-99.
Bremner JD, Vythilingam M, Vermetten E, Nazeer A et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 2002;51:273-279.
Öngür D, Drevest WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 1998;95:13290-13295.
Carretié L, López-Martin S, Albert J. Papel de la corteza prefrontal ventromedial en la respuesta a eventos emocionalmente negativos. Rev Neurol 2010;50:245-252.
Fuster JM. The prefrontal cortex-an update: Time is of the essence. Neuron 2001;30:319-333.
Drevets WC, Price JL, Simpson JR Jr, Todd RD et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997;386:824- 827.
Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neurosci 2007;10:1116-1124.
Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur J Neuropharmacol 2002;12:527-544.
Goldapple K, Segal Z, Garson C, Lau M et al. Modulation of specific cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 2004;61:34-41.
Kennedy SH, Konarski JZ, Segal ZV, Lau MA et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry 2007;164:778- 788.
Wagner G, Koch K, Schachtzabel C, Sobanski T et al. Differential effects of serotoninergic and noradrenergic antidepressants on brain activity during a cognitive control task and neurofunctional prediction of treatment outcome in patients with depression. J Psychiatry Neurosci 2010;35:247-257.
Kuhn J, Gründler TOJ, Lenartz D, Stum V et al. Deep brain stimulation for psychiatric disorders. Dtsch Arztebl Int 2010;107:105-113.
Mayberg HS, Lozano AM, Voon V, McNeely HE et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005;45:651-660.
Drevets CW, Videen TO, Price JL, Preskorn SH et al. A functional anatomical study of unipolar depression. J Neurosci 1992;12:3628-3641.
Bremner JD, Innis RB, Solomon RM, Staib LH et al. Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced depressive relapse. Arch Gen Psychiatry 1997;54:364-374.
Meyer JH, Ginovart N, Boovariwala A, Sagrati S et al. Elevated monoamine oxidase A levels in the brain. An explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 2006;63:1209- 1216.
Zhang X, Gainetdinov RR, Beaulieu J-M, Sotnikova TD et al. Loss-offunction mutation in tryptophan hydroxilase-2 identified in unipolar depression. Neuron 2005;45:11-16.
Ruhé HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 2007;12:331-359.
Hasler G, Fromm S, Carlson PJ, Luckenbaugh DA et al. Neural response to cathecolamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry 2008;65:521-531.
Klimek V, Stockmeier C, Overholser J, Meltzer HY et al. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci 1997;17:8451-8458.
Ordway GA, Schenk J, Stockmeier CA, May W et al. Elevated agonist binding to α2-adrenoreceptors in the locus coeruleus in major depression. Biol Psychiatry 2003;53:315-323.
Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nature Neurosci 2007;10:1089-1093.
Dwivedi Y, Rizavi HS, Conley RR, Roberts RC et al. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003;60:804-815.
Chen B, Dowlatshahi D, MacQueen GM, Wang J-F et al. Increased hippocampal BDNF inmunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001;50:260-265.
Groves JO. Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry 2007;12:1079-1088.
Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995;15:7539-7547.
Saarelainen T, Hendolin P, Lucas G, Koponen E et al. Activation of the trkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 2003;23:349-357.
Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ et al. Neurobiology of depression. Neuron 2002;34:13-25.
Norrholm SD, Quimet CC. Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse 2001;42:151-163.
Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000;20:9104-9110.
Santarelli L, Saxe M, Gross C, Surget A et al. Requirement of hippocampal neurogenesis for the behavioral effect of antidepressants. Science 2003;301:805-809.
Reed AL, Happe HK, Petty F, Bylund DB. Juvenile rats in the force- swim test model the human response to antidepressants treatment for pediatric depression. Psychopharmacology 2008;197:433-441.
Shirayama Y, Chen AC-H, Nakagawa S, Russell DS et al. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002;22:3251-3261.
Lemonde S, Turecki G, Bakish D, Du L et al. Impaired repression at a 5-hidroxytriptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 2003;23:8788-8799.
Hesselgrave N, Parsey RV. Imaging the serotonin 1A receptor using [11C] WAY100635 in healthy controls and major depression. Phil Trans R Soc B 2013;368:20120004. http//dx.doi.org/10.1098/rstb.2012.0004.
Parsey RV, Olvet DM, Oquendo MA, Huang Y-Y et al. Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a naturalistic study. Neuropsychopharmacology 2006;31:1745-1749.
Richardson-Jones JW, Craige CP, Guiard BP, Stephen A et al. 5-HT1A receptor levels determine vulnerability to stress and response to antidepressants. Neuron 2010;65:40-52.
Artigas F, Romero L, De Montigny C, Blier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 1996;19:378-383.
Celada P, Puig V, Amargós-Bosch M, Adell A et al. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 2004;29:252-265.
Castro ME, Diaz A, Del Olmo E, Pazos A. Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 2003;44:93-101.
Hensler JG. Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology 2002;26:565-573.
Pejchal T, Foley MA, Kosofsky BE, Waeber C. Chronic fluoxetine treatment selectively uncouples raphe 5-HT1A receptors as measured by [35S]-GTPγS autoradiography. Br J Pharmacol 2002;135:1115-1122.
Sargent PA, Kjaer KH, Bench CJ, Rabiner EA et al. Brain serotonin1A receptor binding measured by positron emission tomography with [11C] WAY-100635. Arch Gen Psychiatry 2000;57:174-180.
Bhagwagar Z, Rabiner EA, Sargent PA, Grasby PM et al. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C] WAY- 100635. Mol Psychiatry 2004;9:386-392.
Drevets WC, Frank E, Price JC, Kupfer DJ et al. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46:1375- 1387.
Savitz J, Lucki I, Drevets WC. 5-HT1A receptor function in major depressive disorder. Prog Neurobiol 2009;88:17-31.
Lanzenberger RR, Mitterhauser M, Spindelegger C, Wadsak W et al. Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psychiatry 2007;61:1081-1089.
Neumeister A, Bain E, Nugent AC, Carson RE et al. Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci 2004;24:589- 591.
Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM. Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 1996;14:35-46.
Puig MV, Celada P, Artigas F. Control serotoninérgico de la corteza prefrontal. Rev Neurol 2004;39:539-547.
Riad M, Garcia S, Watkins KC, Jodoin N et al. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 2000;417:181-194.
Goodfellow NM, Benekareddy M, Vaidya VA, Lambe EK. Layer II/III of the prefrontal cortex: Inhibition by the serotonin 5-HT1A receptor in development and stress. J Neurosci 2009;29:10094-10103.
Talbot JN, Jutkiewicz EM, Graves SM, Clemans CF et al. RGS inhibition at Gάi2 selectively potentiates 5-HT1A-mediated antidepressant effects. Proc Natl Acad Sci USA 2010;107:11086-11091.
Stewart A, Maity B, Wunsch AM, Meng F et al. Regulator of G-protein signaling 6 (RGS6) promotes anxiety and depression by attenuating serotonin mediated activation of the 5-HT1A receptor-adenylyl cyclase axis. FASEB J 2014;28:1735-1744.
Chalmers DT, Kwak SP, Mansour A, Akil H et al. Corticosteroids regulate brain hippocampal 5-HT1A receptor mRNA expression. J Neurosci 1993;13:914-923.
Checkley S. The neuroendocrinology of depression and chronic stress. Br Med Bull 1996;52:597-617.
McKittrick CR, Blanchard DC, Blanchard RJ, McEwen BS et al. Serotonin receptor binding in a colony model of chronic social stress. Biol Psychiatry 1995;37:383-393.
Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induces increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 2004;29:450- 460.
Meyer JH, Kapur S, Houle S, DaSilva J et al. Prefrontal cortex 5-HT2 receptors in depression: An [18F] setoperone PET imaging study. Am J Psychiatry 1999;156:1029-1034.
Pandey GN, Dwivedy Y, Rizavi HS, Ren X et al. et al. Higher expression of serotonin 5-HT2A receptors in the postmortem brains of teenage suicide victims. Am J Psychiatry 2002;159:419-429.
Yatham LN, Liddle PF, Shiah I-S, Scarrow G et al. Brain serotononin2 receptors in major depression. Arch Gen Psychiatry 2000;57:850-858.
Stephens GJ, Mochida S. G protein βγ subunits mediate presynaptic inhibition of transmitter release from rat superior cervical ganglion neurones in culture. J Physiol 2005;563:765-776.
Jewell ML, Currie KPM. Control of CaV2 calcium channels and neurosecretion by heterotrimeric G protein coupled receptors. En: Stephens G, Mochida S (eds.). Modulation of presynaptic calcium channels. New York: Springer; 2013; p.101-130.
Mathew SJ, Manji HK, Charney DS. Novel drugs and therapeutic targets for severe mood disorders. Neuropsychopharmacology 2008;33:2080-2092.
Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. CMAJ 2009;180:305-313.
Dwivedi Y, Pandey GN. Adenylyl cyclase-cyclicAMP signaling in mood disorders: Role of the crucial phosphorylating enzyme protein kinase A. Neuropsychiatric Disease Treatment 2008;4:161-176.
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 2008;33:88- 109.
Nestler EJ, Hyman SE, Malenka RC. Molecular neuropharmacology: A Foundation for Clinical Neuroscience. Segunda ed. New York: Mc- Graw-Hill; 2009.
Tardito D, Perez J, Tiraboschi E, Musazzi L et al. Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: A critical overview. Pharmacol Rev 2006;58:115-134.
Nair A, Vaidya VA. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: molecules that modulate our mood? J Biosci 2006;31:423-434.
Thome J, Sakai N, Shin K-H, Steffen C et al. cAMP response element- mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000;20:4030-4036.
Raap DK, Evans S, Garcia F, Li Q et al. Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT1A receptors: Reductions in neuroendocrine responses to 8-OH-DPAT and in levels of Gz and Gi proteins. J Pharmacol Exp Ther 1999;288:98-106.
Lesch KP, Aulakh CS, Tolliver TJ, Hill JL et al. Regulation of G proteins by chronic antidepressant drug treatment in rat brain: tricyclics but not clorgyline increase Goα subunits. Eur J Pharmacol 1991;207:361-364.
Chen J, Rasenick MM. Chronic antidepressant treatment facilitates G protein activation of adenylyl cyclase without altering G protein content. J Phamacol Exp Ther 1995;275:509-517.
Dwivedi Y, Pandey GN. Effect of subchronic administration of antidepressants and anxiolytics on levels of α subunits of G proteins in the rat brain. J Neural Transm 1997;104:747-760.
Emamghoreishi M, Warsh JJ, Sibony D, Li PP. Lack of effect of chronic antidepressant treatment on Gs and Gi α-subunit protein and mRNA levels in the rat cerebral cortex. Neuropsychopharmacology 1996;15:281-287.
Li Q, Muma NA, Battaglia G, Van de Kar LD. Fluoxetine gradually increases [125I]DOI-labelled 5-HT2A/2C receptors in the hypothalamus without changing the levels of Gq - and G11-proteins. Brain Res 1997;775:225-228.
Lesch KP, Manji HK. Signal-transducing G proteins and antidepressant drugs: evidence for modulation of α subunit gene expression in rat brain. Biol Psychiatry 1992;32:549-579.
Vetulani J, Stawarz RJ, Dingell JV, Sulser F. A possible common mechanism of action of antidepressant treatments: reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg’s Arch Pharmacol 1976;293:109-114.
Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996;93:8455-8459.
Beaulieu J-M, Marion S, Rodriguiz RM, Medevev IO et al. A β–arresting signaling complex mediates lithium action on behavior. Cell 2008;132:125-136.
Karege F, Perroud N, Burkhardt S, Schwald M et al. Alteration in kinase activity but not in protein levels of protein kinase B and glycogen synthase kinase-3β in ventral prefrontal cortex of depressed suicide victims. Biol Psychiatry 2007;61:240-245.
Li X, Zhu W, Roh M-S, Friedman AB et al. In vivo regulation of glycogen synthase kinase-3β (GSK3β) by serotoninergic activity in mouse brain. Neuropsychopharmacology 2004;29:1426-1431.
Vialou V, Feng J, Robison AJ, Nestler EJ. Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 2013;53:59-87.
Tsankova NM, Berton O, Renthal W, Kumar A et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neurosci 2006;9:519-525.
Covington HE III, Maze I, LaPlant QC, Vialou VF et al. Antidepressant actions of histone deacetylase inhibitors. J Neurosci 2009;29:11451-11460.
Wilkinson MB, Xiao G, Kumar A, LaPlant Q, Renthal W et al. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J Neurosci 2009;29:7820-7832.
Uchida S, Hara K, Kobayashi A, Otsuki K et al. Epigenetic status of Gdnf in ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 2011;69:359-372.
Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J et al. p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci USA 2008;105:1358-1363.
David DJ, Samuels BA, Rainer Q, Wang J-W et al. Neurogenesis-dependent and –independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009;62:479-493.
Svenningsson P, Cherguri K, Rachleff I, Flajolet M et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 2006;311:77-80.
Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ et al. Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflamatory drugs in mice and humans. Proc Natl Acad Sci USA 2011;108:9262-9267.
Müller N, Schwarz MJ, Dehning S, Douhe A et al. The cyclooxygenase- 2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 2006;11:680-684.