2015, Number 3
Algorithm for prediction of strains in human tibia by means of artificial intelligence techniques
Language: Spanish
References: 12
Page: 237-244
PDF size: 171.47 Kb.
ABSTRACT
Introduction: the development of information sciences and their influence in a significant way the scientific and technological advances in the field of health care. The simulation of real-life problems through neuronal networks intrinsically relates medicine and informatics since these networks use models based on human neuron functioning. If we add to this potent tool a numerical calculation method that allows the neuronal network to serve as a data source, then tissues and parts of the body could be modeled. One of the branches with more implementation in this regard could be orthopedics due to the similarities of the human body and its osseous structures with the properties of the engineering materials and this is a key area in the application of finite element method.Objective: to create an algorithm that may solve the problems of osseous remodeling of a human tibia under different mechanical load values.
Methods: the Finite Element Method was used together with the professional software ABAQUS/CAE for estimation of strains and deformations and a neuronal network to process the obtained values. The neuronal network was set and then the software MATLAB R2013a was applied.
Results: a neuronal network model that makes it possible to predict the loads that certain area of the tibia may stand.
Conclusions: through the artificial intelligence techniques and the use of the finite element method, it was possible to obtain a model that predicts the strain magnitude that may be supported by a human tibia area depending on the osseous density values present in this area.
REFERENCES
Cisneros Hidalgo YA, González Carbonell RA, Puente Álvarez A, Camue Corona E, Oropesa Rodríguez YE. Aplicación de los modelos mecanobiológicos en los procesos de regeneración ósea. Rev Cub Ortop Traumatol. 2014 [citado 10 Dic 2014];28(2):214- 22. Disponible en: http://bvs.sld.cu/revistas/ibi/vol33_3_14/ibi07314.htm
Garijo N, Martínez J, García-Aznar JM, Pérez MA. Computational evaluation of different numerical tools for the prediction of proximal femur loads from bone morphology. Computer Methods in Applied Mechanics and Engineering. 2014 [citado 5 feb 2015];268(0):437-50. Recuperado de: http://www.sciencedirect.com/science/article/pii/S0045782513002570
González Carbonell RA, Ortiz Prado A, Cisneros Hidalgo YA, Alpízar Aguirre A. Bone remodeling simulation of subject-specific model of tibia under torque. En: Braidot A, Hadad A, editores [internet]. 2015 [citado 1 Ene 2015]. p. 446-9. Recuperado de: http://www.springer.com/engineering/biomedical+engineering/book/978-3-319- 13116-0
Cisneros Hidalgo YA, González Carbonell RA, Puente Álvarez A, Camue Corona E, Oropesa Rodríguez Y. Generación de imágenes tridimensionales: integración de tomografía computarizada y método de los elementos finitos. 2014 [citado 5 Ene 2015];33(3). Recuperado de: http://bvs.sld.cu/revistas/ibi/vol33314/ibi07314.htm