2015, Number 2
<< Back Next >>
Invest Medicoquir 2015; 7 (2)
Handling of renal sodium in an experimental model of arterial hypertension induced by valsartan in rats
Pérez RA, Barber FMO, González NL, Barber GE, Victorio FM
Language: Spanish
References: 20
Page: 253-267
PDF size: 166.51 Kb.
ABSTRACT
Introduction: Hypertension is responsible for twelve million heart and vascular diseases diagnosed in the world every year. Searching for a single cause is still a challenge for researches. The physiopathology of hypertension involves diverse factors that point toward a polygenic origin, and new drugs arise for its treatment.
Methods: Subtherapeutic doses of valsartan (a specific inhibitor of AT-1 receptors of the angiotensin II) were administered to 60 rats with normal blood pressure, and an experimental model of high blood pressure (HBP) was obtained. BP levels were determined in all the animals at the beginning of the experiment and at 20, 35 and 50 days of progress. Such moments corresponded with series A, B and C respectively. Plasmatic concentration, tubular load, reabsorbed and excreted quantity of sodium were determined in experimental and control animals on the 20, 35 and 50 days of the study.
Results: BP figures started to rise in the experimental series B and C after the suppression of the drug, from 15 up to 50 days. In the experimental animals of the series B and C the fractional reabsorption of sodium increased and its excretion decreased, together with an increase of systolic pressure figures. This could be related to a hypertrophy of the proximal tubule.
Conclusions: The modifications found in the renal exchange of sodium coincided with those expected according to the proposed mechanism of hydrosaline retention in the origin of hypertension in these animals.
REFERENCES
Guyton AC, Hall JE. Integración de los mecanismos renales para el control del volumen sanguíneo y del volumen de líquido extracelular; regulación renal del potasio, el calcio, el fosfato, y el magnesio. En: Tratado de Fisiología Médica. Vol. II, 12ma Ed. España: Mc Graw-Hill; 2012. p. 403-16.
Guyton AC, Hall JE. Formación de la orina por los riñones. Filtración glomerular, riego sanguíneo renal y su regulación. En: Tratado de Fisiología Médica. Vol. II, 12ma Ed. España: Mc Graw-Hill; 2012. p. 343-60.
Brenner BM, Schor N, lchikawa Y. Role of angiotensin-II in the physiologic regulation of glomerular filtration. Am J Cardiol. 1982;49:1430-3.
Barber E. Estudio de la génesis de la hipertrofia renal compensatoria a la nefrectomía unilateral [tesis]. La Habana, Cuba; 1973.
Galvizu K. Estudio evolutivo del efecto de la supresión de la administración de Propanolol a ratas normotensas [tesis]. La Habana, Cuba; 1988.
Sarmiento ME. Efecto del Captopril y su posterior supresión sobre la tensión arterial y morfofunción renal de ratas normotensas [tesis]. La Habana, Cuba; 1985.
Barber MO. Modelo de hipertensión arterial experimental en ratas por medio de hipertrofia tubular. Rev Med Mex. 2007. Disponible en: URL: http://indexmedico.journal/edicion10/
Carlos G, Gema F, Emilio R, Manuel A. Hipertensión arterial. Med Enf Nefrourin. 2007;9:252-4.
Zhou MS, Nishida Y, Chen QH, Murakami H, Hosomi H, Kosaka H. Is a hypertension genic factor present in the kidney of hypertensive Dahl rats? Clin Exp Pharmacol Physiol. 1998;25(10):800-4.
Anderson IK, Drew GM. The antihypertensive profile of the angiotensin AT-1 receptor antagonist, GR 138950, and the influence of potential homeostatic compensatory mechanisms in renal hypertensive rats. Br J Pharmacol. 1998;125(6):1236-46.
Perico N, Remuzzi G. Angiotensin II receptor antagonists and treatment of hypertension and renal disease. Curr Opin Nephrolog Hypert. 1998;7(5):571-8.
José CR, Palop A, Bitarte A, Rodríguez F. Efecto del Valsartán sobre la presión arterial y función renal en pacientes con hipertensión arterial y diabetes mellitus tipo 2, estudio Lapaval. Nefrolog. 2005;25:500-8.
Carlos C, Luis MR, Julián S. Indicaciones del bloqueo doble de la angiotensina II. Hipert Riesg Vasc. 2003;20:315-23.
Hecht K. Papel del hipocampo en la neurosis experimenta desregulación neurótica de la presión sanguínea. Algunos aspectos fisiológicos, teóricos y prácticos de la psiquiatría. La Habana: Editorial Científico Técnica; 1979. p. 46-50.
Smith HW, Tinkelstein N. The renal clearance of substituted hipuric acid derivatives and other aromatic acids in dog and man. J Clin Invest. 1945;24:388.
Schreiner G. Determination of inulin by means of resorcinol. Biol and Med. 1950;70:726.
Tobian L, Lange J, Azar S, lwai J, Koop D, Coffee K, et al. Reduction of natriuretic capacity and renin release in isolated, blood-perfused kidneys of Dahl hypertension-prone rats. Circ Res. 1978;43(1):92-8.
Tobian L, Lange J, Iwai J, Hiller K, Johnson MA, Goossens P. Prevention with thiazide of NaCl induced hypertension in Dahl "S" rats: Evidence for a Na-retaining humoral agent in "S" rats. Hypertens. 1979;1:316-23.
Manunta P, Burnier M, D’Amico M, Buzzi L, Millard M, Bariassina C, et al. Adducing polymorphism affects renal proximal tubule reabsorption in hypertension. Hypertens. 1999;33(2):694-7.
Farge D, Julien J. Effects of transplantation on the renin angiotensin system. J Hum Hypertens. 1999;12(12):827-32.