2015, Number 6
<< Back Next >>
Gac Med Mex 2015; 151 (6)
Phototransduction mediated by melanopsin in intrinsically photosensitive retinal ganglion cells
Domínguez-Solís CA, Pérez-León JA
Language: Spanish
References: 64
Page: 764-776
PDF size: 174.89 Kb.
ABSTRACT
Melanopsin is the most recent photopigment described. As all the other opsins, it attaches in the retina as chromophore. Its
amino acid sequence resembles more invertebrate opsins than those of vertebrates. The signal transduction pathway of
opsins in vertebrates is based on the coupling to the G protein transducin, triggering a signaling cascade that results in the
hyperpolarization of the plasma membrane. On the contrary, the photoreceptors of invertebrates activate the Gq protein
pathway, which leads to depolarizing responses. Phototransduction mediated by melanopsin leads to the depolarization of
those cells where it is expressed, the intrinsically photosensitive retinal ganglion cells; the cellular messengers and the ion
channel type(s) responsible for the cells´ response is still unclear. Studies to elucidate the signaling cascade of melanopsin
in heterologous expression systems, in retina and isolated/cultured intrinsically photosensitive retinal ganglion cells, have provided evidence for the involvement of protein Gq and phospholipase C together with the likely participation of an ion
channel member of the transient receptor potential-canonical family, a transduction pathway similar to invertebrate photopigments,
particularly Drosophila melanogaster.
The intrinsically photosensitive retinal ganglion cells are the sole source of retinal inferences to the suprachiasmatic nucleus;
thus, clarifying completely the melanopsin signaling pathway will impact the chronobiology field, including the clinical aspects.
REFERENCES
Kolb H. How the retina works. Amer Sci. 2003;91:28-35.
Wässle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004;5:1-11.
Provencio I, Warthen D. Melanopsin, the photopigment of intrinsically photosensitive retinal ganglion cells. Wiley Interdiscip Rev Membr Transp Signal. 2012;1:228-37.
Berson D, Dunn F, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295 1070-3.
Esquiva G, Lax P, Cuenca N. Impairment of Intrinsically Photosensitive Retinal Ganglion Cells Associated With Late Stages of Retinal Degeneration. Invest Ophthalmol Vis Sci. 2013;54:4605-18.
Bellingham J, Foster RG. Opsins and mammalian photoentrainment. Cell Tissue Res. 2002;309:57-71.
Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A. Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade. PNAS. 2008;105:15576-80.
Scott K, Becker A, Sun Y, Hardy R, Zuker C. Gqa protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron. 1995;15:919-27.
Yau K-W, Hardie RC. Phototransduction Motifs and Variations. Cell. 2009;139:246-64.
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95:340-5.
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA. 1998;95:340-5.
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600-5.
Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci. 2008;31:27-36.
Panda S, Sato TK, Castrucci AM, et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science. 2002;298:2213-6.
Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21:6405-12.
Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535:261-7.
Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau K-W. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299:245-7.
Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424:76-81.
Panda S, Provencio I, Tu DC, et al. Melanopsin is required for non-image- forming photic responses in blind mice. Science. 2003;301:525-7.
Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau K-W, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007;47:946-54.
Lupi D, Oster H, Thompson S, Foster RG. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci. 2008;11:1068-73.
Yau K-W, Hardie RC. Phototransduction motifs and variations. Cell. 2009;139:246-64.
Rollag MD, Berson DM, Provencio I. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms. 2003;18: 227-34.
Pickard GE, Sollars PJ. Intrinsically photosensitive retinal ganglion cells. Sci China Life Sci. 2010;53:58-67.
Bellingham J, Foster RG. Opsins and mammalian photoentrainment. Cell Tissue Res. 2002;309:57-71.
Lucas RJ, Peirson SN, Berson DM, et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014;37:1-9.
Arendt D. Evolution of eyes and photoreceptor cell types. Int J Dev Biol. 2003;47:563-71.
Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000;289:739-45.
Putney JW, Tomita T. Phospholipase C signaling and calcium influx. Adv Biol Regul. 2012;52:152-64.
Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch. 2007;454:821-47.
Lucas RJ. Mammalian inner retinal photoreception. Curr Biol. 2013;23:R125-33.
Schmidt TM, Chen S-K, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 2011;34: 572-80.
Hartwick AT, Bramley JR, Yu J, et al. Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci. 2007;27:13468-80.
Clapham DE, Montell C, Schultz G, Julius D. International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev. 2003;55:591-6.
Vennekens R, Voets T, Bindels R, Droogmans G, Nilius B. Current understanding of mammalian TRP homologues. Cell Calcium. 2002;31: 253-64.
Montell C. TRP channels in Drosophila photoreceptor cells. J Physiol. 2005;567:45-51.
Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233-52.
Ambudkar IS. Ca2+ signaling microdomains: platforms for the assembly andregulation of TRPC channels. Trends Pharmacol Sci. 2006;27:25-32.
Ambudkar IS, Ong HL. Organization and function of TRPC channelosomes. Pflugers Arch. 2007;455:187-200.
Birnbaumer L. The TRPC Class of ion channels: A critical review of their roles in slow, sustained increases in intracellular Ca2+ concentrations. Annu Rev Pharmacol Toxicol. 2009;49:395-426.
Bernaudat F, Frelet-Barrand A, Pochon N, et al. Heterologous expression of membrane proteins: choosing the appropriate host. PloS one. 2011;6:e29191.
Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR. Melanopsin forms a functional short-wavelength photopigment. Biochemistry. 2003;42:12734-8.
Weng K, Lu CC, Daggett LP, et al. Functional coupling of a human retinal metabotropic glutamate receptor (hmGluR6) to bovine rod transducin and rat Go in an in vitro reconstitution system. J Biol Chem. 1997;272:33100-4.
Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW. Addition of human melanopsin renders mammalian cells photoresponsive. Nature. 2005;433:741-5.
Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T. Illumination of the melanopsin signaling pathway. Science 2005;307:600-4.
Qiu X, Kumbalasiri T, Carlson SM, et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature. 2005;433:745-9.
Kumbalasiri T, Rollag MD, Isoldi MC, Castrucci AM, Provencio I. Melanopsin triggers the release of internal calcium stores in response to light. Photochem Photobiol. 2007;83(2):273-9.
Bailes H, Lucas R. Human melanopsin forms a pigment maximally sensitive to blue light (λmax≈ 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades. Proc R Soc B. 2013;280:1-9.
Koyanagi M, Terakita A. Gq‐coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol. 2008;84:1024-30.
Wong SF. G protein selectivity is regulated by multiple intracellular regions of GPCRs. Neurosignals. 2003;12:1-12.
Isoldi MC, Rollag MD, Castrucci AM, Provencio I. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci U S A. 2005;102:1217-21.
Contin MA, Verra DM, Guido ME. An invertebrate-like phototransduction cascade mediates light detection in the chicken retinal ganglion cells. FASEB J. 2006;20:2648-50.
Contín MA, Verra DM, Salvador G, Ilincheta M, Giusto NM, Guido ME. Light activation of the phosphoinositide cycle in intrinsically photosensitive chicken retinal ganglion cells. Invest Ophthalmol Vis Sci. 2010;51: 5491-8.
Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM. Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol. 2008;99:2522-32.
Sekaran S, Lall GS, Ralphs KL, et al. 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci. 2007;27:3981-6.
Warren EJ, Allen CN, Brown RL, Robinson DW. The light‐activated signaling pathway in SCN‐projecting rat retinal ganglion cells. Eur J Neurosci. 2006;23:2477-87.
Perez‐Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P. Intrinsic phototransduction persists in melanopsin‐expressing ganglion cells lacking diacylglycerol‐sensitive TRPC subunits. Eur J Neurosci. 2011;33:856-67.
Xue T, Do M, Riccio A, et al. Melanopsin signalling in mammalian iris and retina. Nature. 2011;479:67-73.
Hughes S, Pothecary CA, Jagannath A, Foster RG, Hankins MW, Peirson SN. Profound defects in pupillary responses to light in TRPM‐channel null mice: a role for TRPM channels in non‐image‐orming photoreception. Eur J Neurosci. 2012;35:34-43.
LeGates TA, Altimus CM, Wang H, et al. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature. 2012;491:594-8.
Roecklein KA, Rohan KJ, Duncan WC, et al. A missense variant (P10L) of the melanopsin (Opn4) gene is associated with Seasonal Affective Disorder. J Affect Disord. 2009;114:279-85.
Dijk D-J, Archer SN. Light, sleep, and circadian rhythms: together again. PLoS Biol. 2009;7:e1000145.
Holzman DC. What’s in a color? The unique human health effects of blue light. Environ Health Perspec. 2010;118:A22.
Jones KA, Hatori M, Mure LS BJ, et al. Small-molecule antagonists of melanopsinmediated phototransduction. Nat Chem Biol. 2013;9:630-5.