2015, Número 6
<< Anterior Siguiente >>
Gac Med Mex 2015; 151 (6)
Mecanismo de fototraducción de la melanopsina en las células ganglionares retinianas intrínsecamente fotosensibles (ipRGC)
Domínguez-Solís CA, Pérez-León JA
Idioma: Español
Referencias bibliográficas: 64
Paginas: 764-776
Archivo PDF: 174.89 Kb.
RESUMEN
La melanopsina, presente en las ipRGC, es una proteína de membrana unida al cromóforo 11-cis-retinal que le permite
responder a la luz mediante la vía de transducción característica de los receptores acoplados a las proteínas G. La secuencia
de aminoácidos del fotopigmento es más semejante a las opsinas de los invertebrados que a las de los vertebrados. El
mecanismo de fototraducción de las opsinas en los conos y bastones de los vertebrados se basa en su acoplamiento a la
proteína G transducina, desencadenando una cascada de señalización que hiperpolariza a la membrana plasmática; en
cambio, los fotorreceptores de los invertebrados activan la ruta de la proteína Gq, desembocando en la despolarización. Los
estudios para dilucidar la fototraducción por melanopsina en expresión heteróloga, en la retina y en las células aisladas,
indican la activación de la proteína Gq y la fosfolipasa Cβ, y la participación de un canal iónico de la familia de los canales
iónicos receptores de potencial transitorio canónico (TRPC).
Las ipRGC forman el tracto retinohipotalámico, la aferencia retiniana al núcleo supraquiasmático (NSQ), lo que las convierte
en responsables de fotosincronizar al regulador maestro de los ritmos circadianos. Revelar su mecanismo de fototraducción
repercutiría en la terapéutica de los trastornos cronobiológicos, entre ellos algunos trastornos del ánimo.
REFERENCIAS (EN ESTE ARTÍCULO)
Kolb H. How the retina works. Amer Sci. 2003;91:28-35.
Wässle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004;5:1-11.
Provencio I, Warthen D. Melanopsin, the photopigment of intrinsically photosensitive retinal ganglion cells. Wiley Interdiscip Rev Membr Transp Signal. 2012;1:228-37.
Berson D, Dunn F, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295 1070-3.
Esquiva G, Lax P, Cuenca N. Impairment of Intrinsically Photosensitive Retinal Ganglion Cells Associated With Late Stages of Retinal Degeneration. Invest Ophthalmol Vis Sci. 2013;54:4605-18.
Bellingham J, Foster RG. Opsins and mammalian photoentrainment. Cell Tissue Res. 2002;309:57-71.
Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A. Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade. PNAS. 2008;105:15576-80.
Scott K, Becker A, Sun Y, Hardy R, Zuker C. Gqa protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron. 1995;15:919-27.
Yau K-W, Hardie RC. Phototransduction Motifs and Variations. Cell. 2009;139:246-64.
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95:340-5.
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA. 1998;95:340-5.
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600-5.
Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci. 2008;31:27-36.
Panda S, Sato TK, Castrucci AM, et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science. 2002;298:2213-6.
Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21:6405-12.
Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535:261-7.
Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau K-W. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299:245-7.
Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424:76-81.
Panda S, Provencio I, Tu DC, et al. Melanopsin is required for non-image- forming photic responses in blind mice. Science. 2003;301:525-7.
Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau K-W, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007;47:946-54.
Lupi D, Oster H, Thompson S, Foster RG. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci. 2008;11:1068-73.
Yau K-W, Hardie RC. Phototransduction motifs and variations. Cell. 2009;139:246-64.
Rollag MD, Berson DM, Provencio I. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms. 2003;18: 227-34.
Pickard GE, Sollars PJ. Intrinsically photosensitive retinal ganglion cells. Sci China Life Sci. 2010;53:58-67.
Bellingham J, Foster RG. Opsins and mammalian photoentrainment. Cell Tissue Res. 2002;309:57-71.
Lucas RJ, Peirson SN, Berson DM, et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014;37:1-9.
Arendt D. Evolution of eyes and photoreceptor cell types. Int J Dev Biol. 2003;47:563-71.
Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000;289:739-45.
Putney JW, Tomita T. Phospholipase C signaling and calcium influx. Adv Biol Regul. 2012;52:152-64.
Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch. 2007;454:821-47.
Lucas RJ. Mammalian inner retinal photoreception. Curr Biol. 2013;23:R125-33.
Schmidt TM, Chen S-K, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 2011;34: 572-80.
Hartwick AT, Bramley JR, Yu J, et al. Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci. 2007;27:13468-80.
Clapham DE, Montell C, Schultz G, Julius D. International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev. 2003;55:591-6.
Vennekens R, Voets T, Bindels R, Droogmans G, Nilius B. Current understanding of mammalian TRP homologues. Cell Calcium. 2002;31: 253-64.
Montell C. TRP channels in Drosophila photoreceptor cells. J Physiol. 2005;567:45-51.
Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233-52.
Ambudkar IS. Ca2+ signaling microdomains: platforms for the assembly andregulation of TRPC channels. Trends Pharmacol Sci. 2006;27:25-32.
Ambudkar IS, Ong HL. Organization and function of TRPC channelosomes. Pflugers Arch. 2007;455:187-200.
Birnbaumer L. The TRPC Class of ion channels: A critical review of their roles in slow, sustained increases in intracellular Ca2+ concentrations. Annu Rev Pharmacol Toxicol. 2009;49:395-426.
Bernaudat F, Frelet-Barrand A, Pochon N, et al. Heterologous expression of membrane proteins: choosing the appropriate host. PloS one. 2011;6:e29191.
Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR. Melanopsin forms a functional short-wavelength photopigment. Biochemistry. 2003;42:12734-8.
Weng K, Lu CC, Daggett LP, et al. Functional coupling of a human retinal metabotropic glutamate receptor (hmGluR6) to bovine rod transducin and rat Go in an in vitro reconstitution system. J Biol Chem. 1997;272:33100-4.
Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW. Addition of human melanopsin renders mammalian cells photoresponsive. Nature. 2005;433:741-5.
Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T. Illumination of the melanopsin signaling pathway. Science 2005;307:600-4.
Qiu X, Kumbalasiri T, Carlson SM, et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature. 2005;433:745-9.
Kumbalasiri T, Rollag MD, Isoldi MC, Castrucci AM, Provencio I. Melanopsin triggers the release of internal calcium stores in response to light. Photochem Photobiol. 2007;83(2):273-9.
Bailes H, Lucas R. Human melanopsin forms a pigment maximally sensitive to blue light (λmax≈ 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades. Proc R Soc B. 2013;280:1-9.
Koyanagi M, Terakita A. Gq‐coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol. 2008;84:1024-30.
Wong SF. G protein selectivity is regulated by multiple intracellular regions of GPCRs. Neurosignals. 2003;12:1-12.
Isoldi MC, Rollag MD, Castrucci AM, Provencio I. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci U S A. 2005;102:1217-21.
Contin MA, Verra DM, Guido ME. An invertebrate-like phototransduction cascade mediates light detection in the chicken retinal ganglion cells. FASEB J. 2006;20:2648-50.
Contín MA, Verra DM, Salvador G, Ilincheta M, Giusto NM, Guido ME. Light activation of the phosphoinositide cycle in intrinsically photosensitive chicken retinal ganglion cells. Invest Ophthalmol Vis Sci. 2010;51: 5491-8.
Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM. Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol. 2008;99:2522-32.
Sekaran S, Lall GS, Ralphs KL, et al. 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci. 2007;27:3981-6.
Warren EJ, Allen CN, Brown RL, Robinson DW. The light‐activated signaling pathway in SCN‐projecting rat retinal ganglion cells. Eur J Neurosci. 2006;23:2477-87.
Perez‐Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P. Intrinsic phototransduction persists in melanopsin‐expressing ganglion cells lacking diacylglycerol‐sensitive TRPC subunits. Eur J Neurosci. 2011;33:856-67.
Xue T, Do M, Riccio A, et al. Melanopsin signalling in mammalian iris and retina. Nature. 2011;479:67-73.
Hughes S, Pothecary CA, Jagannath A, Foster RG, Hankins MW, Peirson SN. Profound defects in pupillary responses to light in TRPM‐channel null mice: a role for TRPM channels in non‐image‐orming photoreception. Eur J Neurosci. 2012;35:34-43.
LeGates TA, Altimus CM, Wang H, et al. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature. 2012;491:594-8.
Roecklein KA, Rohan KJ, Duncan WC, et al. A missense variant (P10L) of the melanopsin (Opn4) gene is associated with Seasonal Affective Disorder. J Affect Disord. 2009;114:279-85.
Dijk D-J, Archer SN. Light, sleep, and circadian rhythms: together again. PLoS Biol. 2009;7:e1000145.
Holzman DC. What’s in a color? The unique human health effects of blue light. Environ Health Perspec. 2010;118:A22.
Jones KA, Hatori M, Mure LS BJ, et al. Small-molecule antagonists of melanopsinmediated phototransduction. Nat Chem Biol. 2013;9:630-5.