2015, Number 3
<< Back
VacciMonitor 2015; 24 (3)
Development of Novel Protocol for Preclinical Monitoring the Release of Adjuvants Encapsulated Mucosal Delivery Carriers
Ibrahim-Saeed M, Rahaman-Omar A, Zobir-Hussein M, Mohamed-Elkhidir I, Hussein-Al-Ali S, Sadiq-Al-Qubaisi M, Sekawi Z
Language: English
References: 21
Page: 120-132
PDF size: 2324.29 Kb.
ABSTRACT
This work contributes in vaccines down-stream process by introducing a novel platform for
in-vitro monitoring of vaccine-adjuvant delivery profile as a crucial preclinical optimizing step in mucosal vaccines. Nano and micro particles of Calcium phosphate (Cap) vaccine-adjuvant were encapsulated in Chitosan and Alginate polymeric carriers. Adjuvants release profiles monitored in a permeable bag at 37°C, pH 2, incubated in isotonic buffer for 96 hours. The released Calcium in the outer buffer was monitored and compared in-addition to the carrier’s swelling and biophysical properties. The adjuvants and carriers did not interfere with the proliferation of cultured hepatocytes an indicator of their safe use; Chitosan’s viscosity and swelling were higher than Alginate. Chitosan’s Zeta-potential was significantly high positive, while Cap and Alginate were negative. The prepared CaP and Chitosan particles were in nano-size, while the ready-made CaP adjuvant and Alginate were in micro-size using zeta-seizer and scanning electron-micrograph. The release of nano-size particle was in ascending, extended and controlled manner compared to micro-size adjuvant. Moreover, nano-adjuvant release profile from Chitosan was superior compared to Alginate. The core controlling factors in vaccine-adjuvant sustained release includes; smaller adjuvant particles (nano-size), carrier’s low swelling, high viscosity and importantly carrier-adjuvant entrapment reversibility. Chitosan offers sustained ascending superior capacity in releasing Nano-Cap adjuvant. This novel in-vitro pre-clinical study answer a crucial downstream preparative step for optimizing mucosal vaccines before their direct routine in-vivo trial on animal regardless of adjuvant’s particle size or delivery kinetics.
REFERENCES
Baudner BC, Morandi M, Giuliani MM, Verhoef JC, Junginger HE, Costantino P, et al. Modulation of Immune Response to Group C Meningococcal Conjugate Vaccine Given Intranasally to Mice Together with the LTK63 Mucosal Adjuvant and the Trimethyl Chitosan Delivery System. The Journal of Infectious Diseases 2004;189:828-32.
Illum L, Jabbal-Gill I, Hinchcliffe M. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Del Rev 2001;51:81-96.
Gupta RK, Relyveldt RH, Lindbladt EB, Bizzini B, Ben-Efraim S, Gupta CK. Adjuvants: a balance between toxicity and adjuvanticity. Vaccine 1993;11(3):293-306
Cox JC, Coulter AR. Adjuvants: a classification and review of their modes of actionVaccine 1997;15(3):248-56.
Galindo-Rodríguez SA, Allemann E, Fessi H, Doelker E. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Sys 2005;22:419-64.
Calvo P, Remunan-López C, Vila-Jato JL, Alonso MJ. Novel hydrophilic Chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997;63:125-32.
Lucey JA, Horne DS. Milk Salts: Technological Significance. In: McSweeney PLH, Fox PF, editors. Advanced Dairy Chemistry 3-Lactose, Water Salts, and Minor Constituents; 3rd ed. New York: Springer; 2009.p.351-90.
Chernousova S, Klesing J, Soklakova J, Epple M. A genetically active nano-Calcium phosphate paste for bone substitution, encoding the formation of BMP-7 and VEGF-A. RSC Adv 2013;3:11155-61.
Relyveld EH. Preparation and use of Calcium phosphate adsorbed vaccines. Dev Biol Stand 1986; 65:131–6.
Dimitrov DS. Therapeutic Proteins. In: Voynov V, Caravella JA, editors. Methods and Protocols, Methods in Molecular Biology. New York: Springer; 2013.p.1-26.
Ladet S, Laurent D, Domard A. Multi-membrane hydrogels. Nature 2008;452(7183):76-9.
Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Del Rev 2001;47(1):83-97.
Boddupalli BM, Mohammed ZNK, Nath RA, Banji D. Mucoadhesive drug delivery system: An overview. J Adv Pharm Technol Res 2010;1(4):381-7.
Hu L, Sun Y, Wu Y. Advances in Chitosan-based drug delivery vehicles. Nanoscale 2013;5(8)3103-11.
Scherließ R. In vivo evaluation of Chitosan as an adjuvant in subcutaneous vaccine formulations. Vaccine 2013;31(42):4812-9.
Longer MA, Cheng HS, Robinson JR. Bioadhesive polymers as platforms for oral controlled drug delivery III: oral delivery of chlorothiazide using a bioadhesive polymer. J Pharm Sci; 1985;74(4):406-11.
Rawat, M. Singh, D. Saraf, S. et al. Development and in vitro evaluation of Alginate gel-encapsulated, Chitosan -coated ceramic nanocores for oral delivery enzyme. Drug Dev. Ind. Pharm; 2008;34:181-8.
Xing J, Deng L, Dong A. Chitosan/Alginate Nanoparticles Stabilized by Poloxamer for the Controlled Release of 5-Fluorouracil. Journal of Applied Polymer Science; 2010;117(4):2354–9.
Di Martino A, Sottinger M, Risbud MV. Chitosan: A versatile biopolymer. Biomaterials; 2005;26:5983–90.
Lehr CM, Bouwstra JA, Junginger HE. In vitro evaluation of mucoadhesive properties of Chitosan and some other natural polymers. Int J Pharm 1992;78:43-8.
Alves-Cardoso D, van den Beucken JJJP, Both LLH, Bender J, Jansen JA, Leeuwenburgh SC. Gelation and biocompatibility of injectable Alginate–Calcium phosphate gels for bone regeneration. J Biomed Mater Res Part A 2014;102(3):808-17.