2015, Number 3
<< Back Next >>
Rev Cub Oftal 2015; 28 (3)
Effects of the Cuban treatment for retinitis pigmentosa on the choroidal vessels
Pérez ALJ, Román GC, Herrera MM, Barrientos CA, Leyva CAM
Language: Spanish
References: 36
Page: 390-302
PDF size: 121.09 Kb.
ABSTRACT
Objective: to describe the effects on the choroidal vessels after the first application
of the Cuban multi-therapeutic treatment for patients with retinitis pigmentosa.
Methods: a prospective, longitudinal and descriptive study of 32 patients with
retinitis pigmentosa, who had undergone the Cuban multi-therapeutic treatment for
this disease. There was used Heidelberg Retinal Angiograph- 2 to perform infrared
laser scanning confocal ophthalmoscopy in order to take and to process images from
the medial layer of the choroidal vessels before, 15 days, and one year after
treatment. The results were analyzed with Statistica 6.0 and SPSS 15.0 on Windows.
Results: significant increases in vascular diameters of the lower temporal quadrants
were observed whereas non-significant decrease occurred in the upper temporal
quadrants. Additionally, the choroidal vascular diameters increased significantly in the
lower nasal quadrants and decreased in a significant way in the upper nasal ones.
Conclusions: the Cuban multi-therapeutic treatment for retinitis pigmentosa
increases the diameter of choroidal vascular vessels in a permanent way just in the
lower temporal quadrant.
REFERENCES
Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res. 2003;22(5):607-55.
Parmeggiani F. Clinics, epidemiology and genetics of retinitis pigmentosa. Current Genomics. 2011;12(4):236-7.
Dagnelie G. Psychophysical evaluation for visual prosthesis. Annu Rev Biomed Eng. 2008;10:339-68.
Zarbin MA, Montemagno C, Leary JF, Ritch R. Regenerative nanomedicine and the treatment of degenerative retinal diseases. Wiley interdisciplinary reviews: nanomedicine and nanobiotechnology. 2012;4(1):113-37.
Theogarajan LS. A Low-Power Fully Implantable 15: Channel Retinal Stimulator Chip. IEEE J Solid-State Circuits. 2008;43(10):2322-37.
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Jhohnson LV, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27(10):2427-34.
Cai X, Conley SM, Naash MI. RPE65: role in the visual cycle, human retinal disease and gene therapy. Ophthalmic Genetics. 2009;30(2):57-62.
Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. EE.UU. Proc Natl Acad Sci. 2008;105(39):1511-27.
Marc RE, Jones BW. Retinal remodeling in inherited photoreceptor degenerations. Molec Neurobiol. 2005;28(2):139-47.
Peláez Molina O. Retinosis pigmentaria: experiencia cubana. La Habana: Editorial Científico Técnica; 1997.
Pérez Aguiar LJ, García Báez O. Estrategia cubana para el tratamiento de la retinosis pigmentaria. Rev Cubana Oftalmol. 2009 [citado 3 de abril de 2013];22(Supl 2):[aprox. 15 p.]. Disponible en: http://www.bvs.sld.cu/revistas/oft/vol22_sup02_09/oft16309.htm
Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol. 2007 [citado 11 de enero de 2011];2:[aprox. 5 p.]. Disponible en: http://www.annualreviews.org/doi/abs/10.1146/annurev.pathol.2.01006.091859
Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metabolism. 2004;89(6):2548-56.
Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, et al. Adipose tissue engineering for soft tissue regeneration. Tissue Eng Rev. 2010 [citado 12 de febrero de 2013];16(4):[aprox. 37 p.]. Disponible en: http://www.ncbi. nlm.nih.gov/pmc/articles/PMC2946881/
Bailey AM, Kapur S, Katz AJ. Characterization of adipose-derived stem cells: an update. Curr Stem Cell Res Ther. 2010;5(2):95-102.
Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F, et al. Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. EE.UU. Proc Natl Acad Sci. 2009;106(37):15720-5.
Wilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications: a review. Cell Prolif. 2011;44(1):86-98.
Loane E, Nolan JM, O'Donovan O, Bhosale P, Bernstein PS, Beatty S. Transport and retinal capture of lutein and zeaxanthin with reference to age-related macular degeneration. Surv Ophthalmol. 2008;53(1):68-81.
Menéndez S, González R, Ladea OE, Hernández F, León OS, Díaz M. Ozono: Aspectos Básicos y Aplicaciones Clínicas. La Habana: CENIC; 2008. p. 4-107.
Clavo B, Suárez G, Aguilar Y, Gutiérrez D, Ponce P, Cubero A, et al. Brain ischemia and hypometabolism treated by ozone therapy. Forsch Kompl Med. 2011;18(5):283-7.
Bocci VA. Why orthodox medicine has not yet taken advantage of ozone therapy. Arch Med Res. 2008;39(2):259-60.
Travagli V, Zanardi I, Silvietti A, Bocci V. A physicochemical investigation on the effects of ozone on blood. Int J Biol Macromol. 2007;41(5):504-11.
Travagli V, Zanardi I, Bernini P, Nepi S, Tenori L, Bocci V. Effects of ozone blood treatment on the metabolite profile of human blood. Int J Toxicol. 2010;29(2):165-74.
Bocci V, Borrelli E, Travagli V, Zanardi I. The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev. 2009;29(4):646-82.
Díaz J, Martín N, Menéndez CS. Evaluación de la actividad inmunomoduladora del ozono sobre los leucocitos: in vivo e in vitro. Vaccimonitor. 2011;20(1):22-3.
Díaz J, Parés Y, Risco G. Aplicación de la ozonoterapia en la deficiencia Selectiva de IgA. Rev Cubana Hematol Inmunol Hemoter. 2009;25(Supl.):265-301.
Díaz J, Sardiñas G, Menéndez SM, Macías C. Efecto inmunomodulador de la ozonoterapia en niños con deficiencia en la inmunidad mediada por fagocitos. Mediciego. 2012 [citado 21 de noviembre de 2012];18(1):[aprox. 15 p.]. Disponible en: http://www.bvs.sld.cu/revistas/mciego/vol18_01_2012/articulos/t -9.html
Plaja Masip J. Guía Práctica de Electroterapia. Barcelona: Editorial Carin Electromedicarin; 1999.
Delbeke J, Pins D, Michaux G, Wanet-Defalque MC, Parrini S, Veraart C. Electrical stimulation of anterior visual pathways in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2001;42(1):291-7.
Komeima K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. EE.UU. Proc Natl Acad Sci. 2006 [citado 15 de octubre de 2010];103(3):[aprox 24 p.]. Disponible en: http://www.ncbi. nlm. nih.gov/pmc/articles/PMC1544081/
Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol. 2010;150(3):325-9.
Falsini B, Anselmi GM, Marangoni D, Espósito F, Fadda A, Di Renzo A, et al. Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52(2):1064-9.
Pemp B, Schmetterer L. Ocular blood flow in diabetes and age-related macular degeneration. Can J Ophthalmol. 2008;43(3):295-301.
Staurenghi G, Levi G, Pedenovi S, Veronese C. New development in CSLO Fundus Imaging, Springer-Verlag. Berlin: Heidelberg; 2007.
Pérez Aguiar LJ, García Báez O. Oftalmoscopia por barrido de láser en pacientes portadores de retinosis pigmentaria. Revista Misión Milagro [serie en Internet]. 2009 [citado 12 de abril de 2012];3(4):[aprox. 6 p]. Disponible en: http://www.misionmilagro.sld.cu/vol3no4/inv3404.php
Goldsmith HS, Griffith AL, Kupferman A, Catsimpoolas N. Lipid angiogenic factor from omentum. 1984; Jama. 252(15):2034-6.