2015, Number 2
<< Back Next >>
Rev Cubana Invest Bioméd 2015; 34 (2)
Arterial soft tissue and the correlation between biomechanical parameters and clinical aspects
Camue CE, González CRA, Cisneros HYA, Oropeza RYE, Pérez REO
Language: Spanish
References: 18
Page: 122-135
PDF size: 362.90 Kb.
ABSTRACT
Introduction: cerebrovascular diseases are common conditions. They are the main
cause of death both in Cuba and worldwide, since they lead to the development of
ischemic heart diseases. Biomechanical alterations of the arterial wall are early
manifestations of atherosclerotic heart disease.
Objective: substantiate the relationship between biomechanical parameters of
arterial soft tissue and risk factors for atherosclerosis.
Methods: biomechanical modeling was used to study the behavior of the vascular
wall under the action of multiple risk factors.
Results: tangential and circumferential tensions on arterial tissue are related to areas
of atheroma plaque formation and rupture. The presence of stenosis along the route
of a fluid leads to important changes in both arterial pressure and tangential tensions,
and encourages little resistance to circumferential tensions.
Conclusions: mechanical behavior of the arterial wall and its relationship to risk
factors reveal the complexity of the processes occurring therein in both physiological
and pathological conditions. Its characterization constitutes a tool for the integration
of medical and engineering studies, mainly about areas of great artery curvature or
bifurcation.
REFERENCES
Lahoz Mostaza JMM. La aterosclerosis como enfermedad sistémica. Rev Esp Cardiol. 2007;60(2):184-95.
Anuario Estadístico de Salud 2013. MINISTERIO DE SALUD PÚBLICA; 2014. p. 189.
González Carbonell RA, Nápoles Padrón E, Calderín Pérez B, Cisneros Hidalgo Y, Landín Sorí M. Carácter interdisciplinario de la modelación computacional en la solución de problemas de salud. Humanidades Médicas. 2014 Jul;14(3):646-58.
Holzapfel GA, Ogden RW. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J R Soc Interface. 2010 May;7(46):787-99.
Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface. 2013 Jun;10(83):20121004.
Apolinar G, Andrés J. Análisis de inestabilidades en materiales reforzados bidireccionalmente con aplicación en la biomecánica: la formación de aneurismas [Tesis de Maestría]. Madrid: Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (UPM); 2012.
Bustamante R, Holzapfel GA. Methods to compute 3D residual stress distributions in hyperelastic tubes with application to arterial walls. Int J Eng Sci. 2010 Nov;48(11):1066-82.
Claes E. Estudio mecánico de las arterias coronarias humanas y sus sustitutos vasculares [Tesis de doctorado]. Madrid: Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (UPM); 2010.
Isaza López JA. Comportamiento mecánico de tejidos blandos tipo multicapa [Tesis de Maestría]. Medellín: Universidad Nacional de Colombia; 2013.
González R, Álvarez E. Modelos de materiales hiperelásticos para el análisis de los elastómeros usando el MEF. Ingeniería Mecánica. 2009 Sept;12(3):57-66.
Fischer E, Cabrera I. Biomecánica de la hipertensión arterial. Rev Argent Cardiol. 2004 Abr;72(2):150-6.
Fung Y, Fronek K, Patitucci P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol: Heart Circ Physiol. 1979;237(5):H620-H31.
Humphrey JD, Yin FC. A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys J. 1987;52(4):563-70.
Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of elasticity and the physical science of solids. 2000;61(1-3):1-48.
Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes care. 2001 Ago;24(8):1476-85.
Rodrigo JA, Galleguillos OI. Diabetes y Enfermedad Vascular Periférica. Rev Med Clin Condes. 2009;20(5):687-97.
Calvo Plaza FJ. Simulación del flujo sanguíneo y su interacción con la pared arterial mediante modelos de elementos finitos [Tesis de doctorado]. Madrid: Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (UPM); 2006.
Bandieri JD. Influencia de los factores reológicos y biomecánicos en la aterosclerosis y la reestenosis. Parte I. Rev Argent Cardiol. 1997 May;65(3):287-95.