2015, Number 4
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2015; 31 (4)
Ebolavirus: molecular biology and immune response evasion
Betancourt ÁPR, Luján RY, Ramírez ZR, Calderín MO
Language: Spanish
References: 37
Page: 372-384
PDF size: 175.71 Kb.
ABSTRACT
The current Ebolavirus disease outbreak that strikes West Africa has claimed the life
of around 9 000 people and has infected more than 22 000 in six countries, and some isolated cases have reached cities of Europe and the United States. Though
the clinical course of the disease is well known, the specific mechanisms of its
pathogenicity have not been fully delineated yet. Fatal cases of Ebolavirus disease
are marked by a catastrophic failure of both innate and adaptive immune
responses, mediated by virus-encoded proteins as well as properties associated
with its structure. Ebolavirus genome comprises only seven genes encoding about
10 proteins, enough to cause a disease which fatality fluctuates from 40 to 90 %.
At the heart of Ebola-induced immune dysregulation is an early and coordinated
disruption by VP24, VP30, and VP35 that leads to elevated levels of virus
replication, a cascade of inappropriately timed cytokine release, and death of both
antigen-presenting and responding immune cells. The complex mechanisms of
Ebola to selectively regulate immune responses and its variable pathogenicity in
different host species makes this virus both, a challenging foe and scientifically
interesting.
REFERENCES
Hartman AL, Towner JS, Nichol ST. Ebola and Marburg hemorrhagic fever. Clin Lab Med. 2010;30, 161–77.
Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med. 2014 Oct; 371(15):1418–25. doi:10.1056/NEJMoa1404505.
Wool-Lewis RJ, Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol. 1998;72:3155–60.
Álvarez CP, Lasala F, Carrillo J, Muñiz O, Corbi AL, Delgado R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol. 2002;76, 6841–44.
Aleksandrowicz P, Marzi A, Biedenkopf N, Beimforde N, Becker S, Hoenen T, et al. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J Infect Dis. 2011 Nov;204 (Suppl 3):S957-67. doi:10.1093/infdis/jir326.
Misasi J, Chandran K, Yang JY, Considine B, Filone CM, Côté M, et al. Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol. 2012 Mar;86(6):3284-92. doi:10.1128/JVI.06346-11.
Brecher M, Schornberg KL, Delos SE, Fusco ML, Saphire EO, White JM. Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusionrelevant conformational change. J Virol. 2012 Jan;86(1):364-72. doi:10.1128/JVI.05708-11.
Bharat TA, Noda T, Riches JD, Kraehling V, Kolesnikova L, Becker S, et al. Structural dissection of Ebola virus and its assembly determinants using cryoelectron tomography. Proc Natl Acad Sci USA. 2012 Mar 13;109(11):4275-80. doi:10.1073/pnas.1120453109.
Biedenkopf N, Hartlieb B, Hoenen T, Becker S. Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocápside complex: impact on viral transcription and replication. J Biol Chem. 2013 Apr 19;288(16):11165-74. doi: 10.1074/jbc.M113.461285.
Stahelin RV. Membrane binding and bending in Ebola VP40 assembly and egress. Front Microbiol. 2014 Jun 18;5:300. doi: 10.3389/fmicb.2014.00300.
Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W, Monahan S, et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 2013 Mar;9(3):e1003232. doi:10.1371/journal.ppat.1003232.
Biermann M, Maueroder C, Brauner JM, Chaurio R, Janko C, Herrmann M, et al. Surface code-biophysical signals for apoptotic cell clearance. Phys Biol. 2013 Dec;10(6):065007. doi:10.1088/1478-3975/10/6/065007.
Mercer J, Helenius A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science. 2008 Apr 25;320(5875):531-5. doi: 10.1126/science.1155164.
Cilloniz C, Ebihara H, Ni C, Neumann G, Korth MJ, Kelly SM, et al. Functional genomics reveals the induction of inflammatory response and metalloproteinase gene expression during lethal Ebola virus infection. J Virol. 2011 Sep;85(17): 9060-8. doi:10.1128/JVI.00659-11.
Mateo M, Reid SP, Leung LW, Basler CF, Volchkov VE. Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling. J Virol. 2010 Jan;84(2):1169-75. doi:10.1128/JVI.01372-09.
Chiang JJ, Davis ME, Gack MU. Regulation of RIG-I-like receptor signaling by host and viral proteins. Cytokine Growth Factor Rev. 2014 Oct;25(5):491-505. doi: 10.1016/j.cytogfr.2014.06.005.
Kimberlin CR, Bornholdt ZA, Li S, Woods VL, MacRae IJ, Saphire EO. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proc Natl Acad Sci USA. 2010 Jan 5;107(1):314-9. doi:10.1073/pnas.0910547107.
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014 Jan;14(1):36-49. doi:10.1038/nri3581.
Green AM, Beatty PR, Hadjilaou A, Harris E. Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol. 2014 Mar 20;426(6):1148-60. doi:10.1016/j.jmb.2013.11.023.
Fabozzi G, Nabel CS, Dolan MA, Sullivan NJ. Ebolavirus proteins suppress the effects of small interfering RNA by direct interaction with the mammalian RNA interference pathway. J Virol. 2011 Mar;85(6):2512-23. doi:10.1128/JVI.01160-10.
Schümann M, Gantke T, Mühlberger E. Ebola virus VP35 antagonizes PKR activity through its C-terminal interferon inhibitory domain. J Virol. 2009 Sep;83(17):8993-7. doi:10.1128/JVI.00523-09.
Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008 Jan 24;451(7177):425-30. doi: 10.1038/nature06553.
Gnirb K, Fiedler M, Krämer-Kühl A, Bolduan S, Mittler E, Becker S, et al. Analysis of determinants in filovirus glycoproteins required for tetherin antagonism. Viruses. 2014 Apr 9;6(4):1654-71. doi:10.3390/v6041654.
Kaletsky RL, Francica JR, Agrawal-Gamse C, Bates P. Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2886-91. doi:10.1073/pnas.0811014106.
Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 2011 Jan 6;7(1):e1001258. doi:10.1371/journal.ppat.1001258.
Perreira JM, Chin CR, Feeley EM, Brass AL. IFITMs restrict the replication of multiple pathogenic viruses. J Mol Biol. 2013 Dec 13;425(24):4937-55. doi: 10.1016/j.jmb.2013.09.024.
Desai TM, Marin M, Chin CR, Savidis G, Brass AL, Melikyan GB. IFITM3 Restricts Influenza A Virus Entry by Blocking the Formation of Fusion Pores following Virus- Endosome Hemifusion. PLoS Pathog. 2014 Apr 3;10(4):e1004048. doi:10.1371/journal.ppat.1004048.
Harty RN, Pitha PM, Okumura A. Antiviral activity of innate immune protein ISG15. J Innate Immun. 2009;1(5):397-404. doi: 10.1159/000226245.
Liu Y, Harty RN. Viral and host proteins that modulate filovirus budding. Future Virol. 2010 Jul 1;5(4):481-491.
Wauquier N, Becquart P, Padilla C, Baize S, Leroy EM. Human Fatal Zaire Ebola Virus Infection Is Associated with an Aberrant Innate Immunity and with Massive Lymphocyte Apoptosis. PLoS Negl Trop Dis. 2010 Oct 5;4(10). pii: e837. doi: 10.1371/journal.pntd.0000837.
Baize S, Leroy EM, Georges AJ, Georges-Courbot MC, Capron M, Bedjabaga I, et al. Inflammatory responses in Ebola virus-infected patients. Clin Exp Immunol. 2002 Apr;128(1):163-8.
Martinez MJ, Volchkova VA, Raoul H, Alazard-Dany N, Reynard O, Volchkov VE. Role of VP30 phosphorylation in the Ebola virus replication cycle. J Infect Dis. 2011 Nov;204 Suppl 3:S934-40. doi:10.1093/infdis/jir320.
Mohan GS, Li W, Ye L, Compans RW, Yang C. Antigenic subversion: a novel mechanism of host immune evasion by Ebola virus. PLoS Pathog. 2012;8(12):e1003065. doi: 10.1371/journal.ppat.1003065.
Volchkova VA, Dolnik O, Martinez MJ, Reynard O, Volchkov VE. Genomic RNA editing and its impact on Ebola virus adaptation during serial passages in cell culture and infection of guinea pigs. J Infect Dis. 2011 Nov;204 Suppl 3:S941-6. doi: 10.1093/infdis/jir321.
Chepurnov AA, Tuzova MN, Ternovoy VA, Chernukhin IV. Suppressive effect of Ebola virus on T cell proliferation in vitro is provided by a 125-kDa GP viral protein. Immunol Lett. 1999 Jun 1;68(2-3):257-61.
Yaddanapudi K, Palacios G, Towner JS, Chen I, Sariol CA, Nichol ST, et al. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 2006 Dec;20(14):2519-30.
Sanchez AJ, Lukwiya M, Bausch D, Mahanty S, Sanchez AJ, Wagoner KD, et al. Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever:cellular responses, virus load, and nitric oxide levels. J Virol. 2004 Oct;78(19):10370-7.