2016, Number 1
<< Back Next >>
Rev Mex Ing Biomed 2016; 37 (1)
Solution using Lagrange’s Equation to the Model of Cochlear Micromechanics
Jiménez HM
Language: English
References: 21
Page: 29-37
PDF size: 395.07 Kb.
ABSTRACT
In this paper a new solution to micromechanical model of the cochlea developed by Neely and Kim is presented
using Lagrange’s equation. This solution has the advantage over previous methodologies to provide a mathematical
model for the displacement exercised on the outer hair cells in the organ of Corti that only depends of the mechanical
characteristics in the system and the value of the excitation frequency in the inner ear. For the evaluation of this new
model the parameters developed by Ku are used and is considers that the amplitude of the excitation frequency is
normalized. The model developed is satisfactorily compared with the impedance method and its numerical solution
proposed by Neely and Kim, the state space analysis developed by Elliot, Ku and Lineton and the physiological
measurements taken from Békésy.
REFERENCES
Peterson L. C., Bogert B.P., “A Dynamical Theory of the Cochlea” J. Acoust. Soc. Amer., vol. 22, no. 3, pp. 369-381, 1950.
Lesser M. B., Berkley D. A., “Fluid mechanics of the cochlea. Part 1” J. Fluid Mech., vol. 51, no. 3, pp. 497- 512, 1972.
Zweig G., Lipes R., Pierce J. R., “The cochelar compromise” J. Acoust. Soc. Amer., vol. 59, no. 4, pp. 975-982, 1974.
Allen J. B., “Two-dimensional cochlear fluid model: New results” J. Acoust. Soc. Amer., vol. 61, no. 1, pp. 110- 119, 1977.
Steele C. R., Taber L. A., “Comparison of WKV and finite difference calculations for a two-dimensional cochlear model” J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 1001-1006, 1979.
Steele C. R., Taber L. A., “Comparison of WKV calculations and experimentals results for three-dimensional cochlear models” J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 1007-1018, 1979.
Neely S. T., “Finite difference solution of a two-dimensional mathematical model of the cochlea” J. Acoust. Soc. Amer., vol. 69, no. 5, pp. 1386-1393, 1981.
Jiménez H. M. et al., “Computational Model of the Cochlea using Resonace Analysis” Rev. Mex. Ing. Biomédica, vol. 33, no. 2, pp. 77-86, 2012.
Jiménez Hernandez Mario, Modelo mecánico acústico del oído interno en reconocimiento de voz Tesis Doctoral, Instituto Politécnico Nacional (México), 2013.
Békésy V. v., Experiments in hearing Mc Graw Hill (USA), 1960.
Neely S. T., Kim D. O., “A model for active elements in cochlear biomechanics” J. Acoust. Soc. Amer., vol. 79, no. 5, pp. 1472-1480, 1986.
Elliot S. J., Ku E. M., Lineton B. “A state space model for cochlear mechanics” J. Acoust. Soc. Amer., vol. 122, no. 5, pp. 2759-2771, 2007.
Ku E. M., Elliot S. J., Lineton B. “Statistics of instabilities in a state space model of the human cochlea” J. Acoust. Soc. Amer., vol. 124, no. 2, pp. 1068-1079, 2008.
Ku Emery Mayon, Modelling the Human Cochlea Doctoral Thesis, University of Southampton (UK), 2008.
Ku E. M., Elliot S. J., Lineton B., “Limit cycle oscillations in a nonlinear state space model of the human cochlea” J. Acoust. Soc. Amer., vol. 126, no. 2, pp. 739-750, 2009.
Berlin C. H., Bobbin R. P., Hair Cells Micromechanics and Hearing Singular Thomson Learning (USA), 2001.
Berlin C. H., Bobbin R. P., Hair Cells Micromechanics and Otoacustic Emission Singular Thomson Learning (USA), 2002.
Duifhuis H., Cochlear Mechanics: Introduction to a Time Domain Analysis of the Nonlinear Cochela Springer (USA), 2012.
Yost W. A., Fundamentals of Hearing: An introduction Fifth Edition, Emerald (UK), 2008.
Keener J., Sneyd J, Mathematical Physiology II: Systems Physiology Second Edition, Springer (USA), 2009.
Furui S., Sondhi M. M., Advances in speech signal processing Marcel Dekker, Inc. (USA), 1992.